

Apache Felix –
A Standard Plugin Model

for Apache

Richard S. Hall

Atlanta, Georgia U.S.A.
November 13th, 2007

Agenda
 Why OSGi technology?
 OSGi technology overview
 Apache Felix status
 Example application
 OSGi application approaches
 Example application demo
 Advanced approaches
 Conclusion

Why OSGi Technology?
(Addressing Java's Limitations)

Motivation (1/2)
• Growing complexity requires not only

highly modular code, but also systems
that are dynamically extensible

• This is true no matter which problem
domain is your area of concern
– Embedded systems need to adapt to

changing requirements even though they are
deployed out in the field

– Client applications must respond to user
desires for new functionality instantaneously

– Server applications must be configurable and
manageable without down time

Motivation (2/2)
• Java provides the mechanisms to do

these things, but they are
– Low level
– Error prone
– Ad hoc

• Java's shortcoming are particular evident
in its support for both modularity and
dynamism

Java Modularity Limitations (1/2)
• Limited scoping mechanisms

– No module access modifier

• Simplistic version handling
– Class path is first version found
– JAR files assume backwards compatibility at

best

• Implicit dependencies
– Dependencies are implicit in class path

ordering
– JAR files add improvements for extensions,

but cannot control visibility

Java Modularity Limitations (2/2)
• Split packages by default

– Class path approach searches until it finds,
which leads to shadowing or version mixing

– JAR files can provide sealing

• Unsophisticated consistency model
– Cuts across previous issues, it is difficult to

ensure class space consistency

• Missing module concept
– Classes are too fine grained, packages are

too simplistic, class loaders are too low level

• No deployment support

Java Dynamism Limitations
• Low-level support for dynamics

– Class loaders are complicated to use and
error prone

• Support for dynamics is still purely
manual
– Must be completely managed by the

programmer
– Leads to many ad hoc, incompatible

solutions

• No deployment support

OSGi Technology
• Resolves many deficiencies associated

with standard Java support for modularity
and dynamism
– Defines a module concept

• Explicit sharing of code (i.e., importing and
exporting)

– Automatic management of code
dependencies

• Enforces sophisticated consistency rules for class
loading

– Code life cycle management
• Manages dynamic deployment and configuration

OSGi Technology
Overview

OSGi Alliance
• Industry consortium
• Defines OSGi Service Platform

– Framework specification for hosting
dynamically downloadable services

– Standard service specifications

• Several expert groups define the
specifications
– Core Platform Expert Group (CPEG)
– Mobile Expert Group (MEG)
– Vehicle Expert Group (VEG)
– Enterprise Expert Group (EEG)

OSGi Architectural Overview

Hardware

Driver Driver Driver

Operating System

Java

OSGi

Fra
m

ew
or

k

Bundle

OSGi Framework (1/2)
• Component-oriented framework

– BundlesBundles (i.e., modules/components)
– Package sharing and version management
– Life-cycle management and notification

• Service-oriented architecture
– Publish/find/bind intra-VM service model

• Open remote management architecture
– No prescribed policy or protocol

OSGi Framework (2/2)
• Runs multiple applications and services
• Single VM instance
• Separate class loader per bundle

– Class loader graph
– Independent namespaces
– Class sharing at the Java package level

• Java Permissions to secure framework
• Explicitly considers dynamic scenarios

– Run-time install, update, and uninstall of
bundles

OSGi Framework Layering

CDC
CDC

Execution
Environment

L0 -
•OSGi Minimum Execution Environment
•CDC/Foundation
•JavaSE

MODULE
L1 - Creates the concept of modules
(aka. bundles) that use classes from
each other in a controlled way
according to system and bundle
constraints

LIFECYCLE
L2 - Manages the lifecycle of bundle in
a bundle repository without requiring
the VM be restarted

SERVICE MODEL L3 – Provides a publish/find/bind
service model to decouple bundles

OSGi Modularity (1/4)
• Multi-version support

– i.e., side-by-side versions

• Explicit code boundaries and
dependencies
– i.e., package imports and exports

• Support for various sharing policies
– i.e., arbitrary version range support

OSGi Modularity (2/4)
• Arbitrary export/import attributes for more

control
– Influence package selection

• Sophisticated class space consistency
model
– Ensures code constraints are not violated

• Package filtering for fine-grained class
visibility
– Exporters may include/exclude specific

classes from exported package

OSGi Modularity (3/4)
• Bundle fragments

– A single logical module in multiple physical
bundles

• Bundle dependencies
– Allows for tight coupling when required

OSGi Modularity (4/4)
• Dynamic module deployment and

dependency resolution

OSGi framework

Provided package

existing
bundle

OSGi Modularity (4/4)
• Dynamic module deployment and

dependency resolution

OSGi framework

existing
bundle

install
bundle.jar

OSGi Modularity (4/4)
• Dynamic module deployment and

dependency resolution

OSGi framework

existing
bundleresolve

bundle

OSGi Modularity (4/4)
• Dynamic module deployment and

dependency resolution

OSGi framework

existing
bundle

automatic package
dependency resolution

Leveraging OSGi Modularity
• Text editor + jar

– Just add metadata to your JAR file's manifest

• Eclipse
– Plug-in Development Environment (PDE)

directly supports bundles

• Bundle packaging tools
– BND from Peter Kriens
– Apache Felix maven-bundle-plugin based

on BND

OSGi Services (1/3)
• OSGi framework promotes service-

oriented interaction pattern among
bundles
– Possible to use modules without services

Publish Find

Interact

Service
Registry

Service
Provider

Service
Requester

Service
Description

OSGi Services (2/3)
• An OSGi application is...

– A collection of bundles that interact via
service interfaces

– Bundles may be independently developed
and deployed

– Bundles and their associated services may
appear or disappear at any time

• Resulting application follows a Service-
Oriented Component Model approach

OSGi Services (3/3)
• Dynamic service lookup

OSGi framework

Provided service

Provided package

existing
bundle

component

OSGi Services (3/3)
• Dynamic service lookup

OSGi framework

existing
bundle

componentinstall
bundle.jar

OSGi Services (3/3)
• Dynamic service lookup

OSGi framework

existing
bundle

component

activate
bundle

OSGi Services (3/3)
• Dynamic service lookup

OSGi framework

existing
bundle

component

automatic package
dependency resolution

OSGi Services (3/3)
• Dynamic service lookup

OSGi framework

existing
bundle

component

manual service
dependency resolution

OSGi Services Advantages
• Lightweight services

– Direct method invocation
• Good design

– Separates interface from implementation
– Enables reuse, substitutability, loose coupling,

and late binding
• Dynamics

– Loose coupling and late binding make it possible
to support run-time dynamism

• Application's configuration is simply the set of
deployed bundles
– Deploy only the bundles that you need

OSGi Services Issues
• Complicated

– Requires a different way of thinking
• Things might appear/disappear at any moment

– Must manually resolve and track services

• There is help
– Service Tracker

• Still somewhat of a manual approach

– Declarative Services, Spring-OSGi, iPOJO
• Sophisticated service-oriented component

frameworks
• Automated dependency injection and more
• More modern, POJO-oriented approaches

Apache Felix Status

Apache Felix (1/4)
• Top-level project (April 2007)
• Apache licensed open source

implementation of OSGi R4
– Framework (in progress, stable and

functional)
• Version 1.0.1 currently available

– Services (in progress, stable and functional)
• Package Admin, Start Level, URL Handlers,

Declarative Services, UPnP Device, HTTP Service,
Configuration Admin, Preferences, User Admin, Wire
Admin, Event Admin, Meta Type, and Log

• OSGi Bundle Repository (OBR), Dependency
Manager, Service Binder, Shell, iPOJO, Mangen

Apache Felix (2/4)
• Felix community is growing strong

– 20 committers
– Code granted and contributed from several

organizations and communities
• Grenoble University, ObjectWeb, CNR-ISTI,

Ascert, Luminis, Apache Directory, INSA, DIT
UPM, Day Management AG

• Several community member contributions

– Apache projects interested in Felix and/or
OSGi

• Directory, Cocoon, JAMES, Jackrabbit, Harmony,
Derby

Apache Felix (3/4)
• Felix bundle developer support

– Apache Maven2 bundle plugin
• Merges OSGi bundle manifest with Maven2 POM

file
• Automatically generates metadata, such as

Bundle-ClassPath, Import-Package, and Export-
Package

– Greatly simplifies bundle development by eliminating
error-prone manual header creation process

• Automatically creates final bundle JAR file
– Also supports embed required packages, instead of

importing them

Apache Felix (4/4)
• Felix Commons

– Effort to bundle-ize common open source
libraries

• Recently started

– Includes 13 bundles, such as antlr, cglib,
commons-collections, etc.

– All community donated wrappers

• Roadmap
– Continue toward R4 and R4.1 compliance

• Largely only missing support for fragments

Example Application

Simple Paint Program
• Defines a SimpleShape interface to

draw shapes
– Different implementations of SimpleShape

can be created to draw different shapes
– Each shape has name and icon properties
– Available shapes are displayed in tool bar

• To draw a shape, click on its button and
then click in the drawing canvas
– Shapes cannot be dragged, but not resized

• Shape implementations can be
dynamically installed/removed

Shape Abstraction
• Conceptual SimpleShape interface

public interface SimpleShape
{
 /**
 * Method to draw the shape of the service.
 * @param g2 The graphics object used for
 * painting.
 * @param p The position to paint the triangle.
 **/
 public void draw(Graphics2D g2, Point p);
}

Paint Program Realization

High-Level Architecture

Drawing
Frame

Shape
Component

Default
Shape

Simple
Shape

1 1Shape
Tracker

1 *

1

1 1

* 1

1

High-Level Architecture

Drawing
Frame

Shape
Component

Default
Shape

Simple
Shape

1 1 1 *

1

1 1

* 1

1

Shape
Tracker

Best practice – Try to
centralize interaction with
OSGi API so that other

components remain
POJOs...only Shape

Tracker will interact with
OSGi API.

High-Level Architecture

Drawing
Frame

Shape
Component

Default
Shape

Simple
Shape

1 1 1 *

1

1 1

* 1

1

Shape
Tracker

Best practice – Do not
make assumptions

about threads...since
we are creating a Swing

application, Shape
Tracker sends events

on Swing thread.

Best practice – Try to
centralize interaction with
OSGi API so that other

components remain
POJOs...only Shape

Tracker will interact with
OSGi API.

High-Level Architecture

Shape
Component

Default
Shape

Simple
Shape

1 1 1 *

1

1 1

* 1

1

Shape
Tracker

Drawing
Frame

Main application
window – gets

dynamically injected
with available shapes

from the Shape
Tracker.

Drawing
Frame

High-Level Architecture

Shape
Component

1 1 1 *

1

1 1

* 1

1

Shape
Tracker

Default
Shape

Simple
ShapeActual shape

implementation.

Drawing
Frame

High-Level Architecture

Shape
Component

1 1 1 *

1

1 1

* 1

1

Shape
Tracker

Default
Shape

Simple
ShapeActual shape

implementation.

Injected proxied shape
implementation to hide
aspects of dynamism
and provide a default

implementation.

Simple
Shape

Default
Shape

Drawing
Frame

High-Level Architecture

1 1 1 *

1

1 1

* 1

1

Shape
Tracker

Shape
Component

Component that draws the
shape in parent frame;

looks up shape via
Drawing Frame rather than
having a direct reference.

Implementing the Design
• The design is reasonably complete, but

what is the precise approach we use for
implementation?
– It depends...
– There are a few approach options when

building OSGi-based applications...

OSGi Application
Approaches

OSGi Application Approaches
• When creating an OSGi-based

application there are two main orthogonal
issues to consider
– Service model vs. extender model
– Bundled application vs. hosted framework

• The first issue is related to choosing the
actual OSGi extensibility mechanism

• The second issue is an advanced topic to
be discussed later, but is related to who is
in control of whom

Service vs. Extender Models
• Two different approaches for adding

extensibility to an OSGi-based application
– The service-based approach uses the OSGi

service concept and the service registry as
the extensibility mechanism

– The extender-based approach uses the
OSGi installed bundle set as the extensibility
mechanism

• Advantages and disadvantages for each
• Can be used independently or together

Service Model

Service
registry

Service Model

Service
registry

Service
publication

Service Model

Service
registry

Service
event

Service Model

Service
registry

Service
request

Service Model

Service
registry

Service binding

Service Whiteboard Pattern
• Best practice

– Instead of having clients look up and use a
service interface, have clients register a
service interface to express their interest

– The service tracks the registered client
interfaces and calls them when appropriate

• Simple, more robust, leverages the OSGi
service model

• This is called the Whiteboard Pattern
– It can be considered an Inversion of Control

pattern

Service-Based Paint Program
• SimpleShape service interface
public interface SimpleShape
{
 // A service property for the name of the shape.
 public static final String NAME_PROPERTY
 = "simple.shape.name";
 // A service property for the icon of the shape.
 public static final String ICON_PROPERTY
 = "simple.shape.icon";

 // Method to draw the shape of the service.
 public void draw(Graphics2D g2, Point p);
}

Service-Based Shape Tracker
• Recall goal of the Shape Tracker

– Use Inversion of Control principles to inject
shapes into application

• Puts tracking logic in one place
• Isolates application from OSGi API

• Implemented as an OSGi Service Tracker
subclass
– Uses whiteboard pattern for services
– Listens for SimpleShape service events

• Result from service publications into OSGi service
registry

Extender Model

Installed
bundles

Extender Model

Installed
bundlesInstall

bundle.jar

Extender Model

Installed
bundles

Create
bundle

Extender Model

Installed
bundles

Bundle
event

Extender Model

Installed
bundles

Interrogate for metadata,
resource, classes, etc.

Extension-Based Paint Program
• SimpleShape extension interface
public interface SimpleShape
{
 // A property for the name of the shape.
 public static final String NAME_PROPERTY
 = "Extension-Name";
 // A property for the icon of the shape.
 public static final String ICON_PROPERTY
 = "Extension-Icon";
 // A property for the class of the shape.
 public static final String CLASS_PROPERTY
 = "Extension-Class";

 // Method to draw the shape of the extension.
 public void draw(Graphics2D g2, Point p);
}

Extension-Based Paint Program
• Extension bundles include extension-

related metadata in their JAR manifest
– for example...

...
Extension-Name: Circle
Extension-Icon: org/apache/felix/circle/circle.png
Extension-Class: org.apache.felix.circle.Circle
...

Extender-Based Shape Tracker
• Recall goal of the Shape Tracker

– Use Inversion of Control principles to inject
shapes into application

• Puts tracking logic in one place
• Isolates application from OSGi API

• Implemented as custom “bundle tracker”
– Uses similar whiteboard pattern, but for

installed bundles
– Listens for bundle events

• Specifically, STARTED and STOPPED events
• Probes bundle manifests to see if bundles provide

shape extensions

Example Application
Demo

Advances Issues

Bundled vs. Hosted
• Applications can leverage OSGi

functionality in two ways
– Build entire application as a set of bundles

that will run on top of a framework instance
– Host a framework instance inside application

and externally interact with bundles/services

Bundled vs. Hosted
• Building application as a set of bundles is

the preferred approach
– Allows application to run on any framework
– Not always possible for legacy applications

• Hosting framework instance allows
piecemeal OSGi adoption
– Will likely tie application to a framework

implementation

Hosted Framework
• More complicated since due to

external/internal gap
– e.g., unlike bundles, the host application

does not have a bundle context by which it
can access framework services

• Required host/framework interactions
– Accessing framework functionality
– Providing services to bundles
– Using services from bundles

Hosted Framework
• Felix tries to simplify hosted instance

scenarios
– All configuration data is passed into

constructor
– Felix framework implements Bundle

interface and acts as the System Bundle
• Gives the host application an intuitive way to

access framework functionality

– Felix constructor also accepts “constructor
activators” to extend system bundle

– Felix tries to multiplex singleton resources to
allow for multiple framework instances

Hosted Framework

// Define configuration properties
Map configMap = new StringMap(false);
configMap.put(..., ...);
...
// Create application activators
List list = new ArrayList();
list.add(new Activator());

try {
 // Create a framework instance
 Felix felix = new Felix(configMap, list);
 // Start framework instance
 felix.start();
 ...
 // Stop framework instance
 felix.stop();
} catch (Exception ex) { ... }

Hosted Framework
• Providing a host application service
BundleContext bc = felix.getBundleContext();
bc.registerService(Service.class, svcObj, null);

Hosted Framework
• Providing a host application service

• Accessing internal bundle services

BundleContext bc = felix.getBundleContext();
bc.registerService(Service.class, svcObj, null);

BundleContext bc = felix.getBundleContext();
ServiceReference ref =
 bc.getServiceReference(Service.class);
Service svcObj = (Service) bc.getService(ref);

Hosted Framework
• Providing a host application service

• Accessing internal bundle services

• Better approach is to use a constructor
activators since it is integrated with
System Bundle (i.e., framework) starting
and stopping

BundleContext bc = felix.getBundleContext();
bc.registerService(Service.class, svcObj, null);

BundleContext bc = felix.getBundleContext();
ServiceReference ref =
 bc.getServiceReference(Service.class);
Service svcObj = (Service) bc.getService(ref);

Hosted Framework
• Classes shared among host application

and bundles must be on the application
class path
– Disadvantage of hosted framework

approach, which limits dynamics
– Use of reflection by host to access bundle

services can eliminate this issue, but it is still
not an optimal solution

• In summary, better to completely bundle
your application if possible

Custom Life Cycle Layer
• [placeholder]
• Can separate service and life cycle layers

from modularity layer
• Create your own life cycle layer using the

extender model to incorporate your own
component model life cycle layer and/or
component interaction layer

Conclusion

