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Why OSGi Technology? 
(Addressing Java's Limitations)







  

Motivation (1/2)
• Growing complexity requires not only 

highly modular code, but also systems 
that are dynamically extensible

• This is true no matter which problem 
domain is your area of concern
– Embedded systems need to adapt to 

changing requirements even though they are 
deployed out in the field

– Client applications must respond to user 
desires for new functionality instantaneously

– Server applications must be configurable and 
manageable without down time



  

Motivation (2/2)
• Java provides the mechanisms to do 

these things, but they are
– Low level
– Error prone
– Ad hoc

• Java's shortcoming are particular evident 
in its support for both modularity and 
dynamism



  

Java Modularity Limitations (1/2)
• Limited scoping mechanisms

– No module access modifier

• Simplistic version handling
– Class path is first version found
– JAR files assume backwards compatibility at 

best

• Implicit dependencies
– Dependencies are implicit in class path 

ordering
– JAR files add improvements for extensions, 

but cannot control visibility



  

Java Modularity Limitations (2/2)
• Split packages by default

– Class path approach searches until it finds, 
which leads to shadowing or version mixing

– JAR files can provide sealing

• Unsophisticated consistency model
– Cuts across previous issues, it is difficult to 

ensure class space consistency

• Missing module concept
– Classes are too fine grained, packages are 

too simplistic, class loaders are too low level

• No deployment support



  

Java Dynamism Limitations
• Low-level support for dynamics

– Class loaders are complicated to use and 
error prone

• Support for dynamics is still purely 
manual
– Must be completely managed by the 

programmer
– Leads to many ad hoc, incompatible 

solutions

• No deployment support



  

OSGi Technology
• Resolves many deficiencies associated 

with standard Java support for modularity 
and dynamism
– Defines a module concept

• Explicit sharing of code (i.e., importing and 
exporting)

– Automatic management of code 
dependencies

• Enforces sophisticated consistency rules for class 
loading

– Code life cycle management
• Manages dynamic deployment and configuration



  

OSGi Technology 
Overview







  

OSGi Alliance
• Industry consortium
• Defines OSGi Service Platform

– Framework specification for hosting 
dynamically downloadable services

– Standard service specifications

• Several expert groups define the 
specifications
– Core Platform Expert Group (CPEG)
– Mobile Expert Group (MEG)
– Vehicle Expert Group (VEG)
– Enterprise Expert Group (EEG)
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OSGi Framework (1/2)
• Component-oriented framework

– BundlesBundles (i.e., modules/components)
– Package sharing and version management
– Life-cycle management and notification

• Service-oriented architecture
– Publish/find/bind intra-VM service model

• Open remote management architecture
– No prescribed policy or protocol



  

OSGi Framework (2/2)
• Runs multiple applications and services
• Single VM instance
• Separate class loader per bundle

– Class loader graph
– Independent namespaces
– Class sharing at the Java package level

• Java Permissions to secure framework
• Explicitly considers dynamic scenarios

– Run-time install, update, and uninstall of 
bundles



  

OSGi Framework Layering
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MODULE
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service model to decouple bundles



  

OSGi Modularity (1/4)
• Multi-version support

– i.e., side-by-side versions

• Explicit code boundaries and 
dependencies
– i.e., package imports and exports

• Support for various sharing policies
– i.e., arbitrary version range support



  

OSGi Modularity (2/4)
• Arbitrary export/import attributes for more 

control
– Influence package selection

• Sophisticated class space consistency 
model
– Ensures code constraints are not violated

• Package filtering for fine-grained class 
visibility
– Exporters may include/exclude specific 

classes from exported package



  

OSGi Modularity (3/4)
• Bundle fragments

– A single logical module in multiple physical 
bundles

• Bundle dependencies
– Allows for tight coupling when required



  

OSGi Modularity (4/4)
• Dynamic module deployment and 

dependency resolution
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Provided package

existing
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OSGi Modularity (4/4)
• Dynamic module deployment and 

dependency resolution
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bundle
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bundle.jar



  

OSGi Modularity (4/4)
• Dynamic module deployment and 

dependency resolution
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bundleresolve
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OSGi Modularity (4/4)
• Dynamic module deployment and 

dependency resolution

OSGi framework

existing
bundle

automatic package
dependency resolution



  

Leveraging OSGi Modularity
• Text editor + jar

– Just add metadata to your JAR file's manifest

• Eclipse
– Plug-in Development Environment (PDE) 

directly supports bundles

• Bundle packaging tools
– BND from Peter Kriens
– Apache Felix maven-bundle-plugin based 

on BND



  

OSGi Services (1/3)
• OSGi framework promotes service-

oriented interaction pattern among 
bundles
– Possible to use modules without services
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OSGi Services (2/3)
• An OSGi application is...

– A collection of bundles that interact via 
service interfaces

– Bundles may be independently developed 
and deployed

– Bundles and their associated services may 
appear or disappear at any time

• Resulting application follows a Service-
Oriented Component Model approach



  

OSGi Services (3/3)
• Dynamic service lookup
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OSGi Services (3/3)
• Dynamic service lookup
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OSGi Services (3/3)
• Dynamic service lookup

OSGi framework

existing
bundle

component

activate
bundle



  

OSGi Services (3/3)
• Dynamic service lookup
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OSGi Services (3/3)
• Dynamic service lookup

OSGi framework
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OSGi Services Advantages
• Lightweight services

– Direct method invocation
• Good design

– Separates interface from implementation
– Enables reuse, substitutability, loose coupling, 

and late binding
• Dynamics

– Loose coupling and late binding make it possible 
to support run-time dynamism

• Application's configuration is simply the set of 
deployed bundles
– Deploy only the bundles that you need



  

OSGi Services Issues
• Complicated

– Requires a different way of thinking
• Things might appear/disappear at any moment

– Must manually resolve and track services

• There is help
– Service Tracker

• Still somewhat of a manual approach

– Declarative Services, Spring-OSGi, iPOJO
• Sophisticated service-oriented component 

frameworks
• Automated dependency injection and more
• More modern, POJO-oriented approaches



  

Apache Felix Status






  

Apache Felix (1/4)
• Top-level project (April 2007)
• Apache licensed open source 

implementation of OSGi R4
– Framework (in progress, stable and 

functional)
• Version 1.0.1 currently available

– Services (in progress, stable and functional)
• Package Admin, Start Level, URL Handlers, 

Declarative Services, UPnP Device, HTTP Service, 
Configuration Admin, Preferences, User Admin, Wire 
Admin, Event Admin, Meta Type, and Log

• OSGi Bundle Repository (OBR), Dependency 
Manager, Service Binder, Shell, iPOJO, Mangen



  

Apache Felix (2/4)
• Felix community is growing strong

– 20 committers
– Code granted and contributed from several 

organizations and communities
• Grenoble University, ObjectWeb, CNR-ISTI, 

Ascert, Luminis, Apache Directory, INSA, DIT 
UPM, Day Management AG

• Several community member contributions

– Apache projects interested in Felix and/or 
OSGi

• Directory, Cocoon, JAMES, Jackrabbit, Harmony, 
Derby



  

Apache Felix (3/4)
• Felix bundle developer support

– Apache Maven2 bundle plugin
• Merges OSGi bundle manifest with Maven2 POM 

file
• Automatically generates metadata, such as 

Bundle-ClassPath, Import-Package, and Export-
Package

– Greatly simplifies bundle development by eliminating 
error-prone manual header creation process

• Automatically creates final bundle JAR file
– Also supports embed required packages, instead of 

importing them



  

Apache Felix (4/4)
• Felix Commons

– Effort to bundle-ize common open source 
libraries

• Recently started

– Includes 13 bundles, such as antlr, cglib, 
commons-collections, etc.

– All community donated wrappers

• Roadmap
– Continue toward R4 and R4.1 compliance

• Largely only missing support for fragments



  

Example Application






  

Simple Paint Program
• Defines a SimpleShape interface to 

draw shapes
– Different implementations of SimpleShape 

can be created to draw different shapes
– Each shape has name and icon properties
– Available shapes are displayed in tool bar

• To draw a shape, click on its button and 
then click in the drawing canvas
– Shapes cannot be dragged, but not resized

• Shape implementations can be 
dynamically installed/removed



  

Shape Abstraction
• Conceptual SimpleShape interface

public interface SimpleShape
{
    /**
     * Method to draw the shape of the service.
     * @param g2 The graphics object used for
     *           painting.
     * @param p The position to paint the triangle.
    **/
    public void draw(Graphics2D g2, Point p);
}



  

Paint Program Realization



  

High-Level Architecture
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High-Level Architecture
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High-Level Architecture
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High-Level Architecture
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Implementing the Design
• The design is reasonably complete, but 

what is the precise approach we use for 
implementation?
– It depends...
– There are a few approach options when 

building OSGi-based applications...



  

OSGi Application 
Approaches







  

OSGi Application Approaches
• When creating an OSGi-based 

application there are two main orthogonal 
issues to consider
– Service model vs. extender model
– Bundled application vs. hosted framework

• The first issue is related to choosing the 
actual OSGi extensibility mechanism

• The second issue is an advanced topic to 
be discussed later, but is related to who is 
in control of whom



  

Service vs. Extender Models
• Two different approaches for adding 

extensibility to an OSGi-based application
– The service-based approach uses the OSGi 

service concept and the service registry as 
the extensibility mechanism

– The extender-based approach uses the 
OSGi installed bundle set as the extensibility 
mechanism

• Advantages and disadvantages for each
• Can be used independently or together
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Service Whiteboard Pattern
• Best practice

– Instead of having clients look up and use a 
service interface, have clients register a 
service interface to express their interest

– The service tracks the registered client 
interfaces and calls them when appropriate

• Simple, more robust, leverages the OSGi 
service model

• This is called the Whiteboard Pattern
– It can be considered an Inversion of Control 

pattern



  

Service-Based Paint Program
• SimpleShape service interface
public interface SimpleShape
{
    // A service property for the name of the shape.
    public static final String NAME_PROPERTY
        = "simple.shape.name";
    // A service property for the icon of the shape.
    public static final String ICON_PROPERTY
        = "simple.shape.icon";

    // Method to draw the shape of the service.
    public void draw(Graphics2D g2, Point p);
}



  

Service-Based Shape Tracker
• Recall goal of the Shape Tracker

– Use Inversion of Control principles to inject 
shapes into application

• Puts tracking logic in one place
• Isolates application from OSGi API

• Implemented as an OSGi Service Tracker 
subclass
– Uses whiteboard pattern for services
– Listens for SimpleShape service events

• Result from service publications into OSGi service 
registry



  

Extender Model
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Extension-Based Paint Program
• SimpleShape extension interface
public interface SimpleShape
{
    // A property for the name of the shape.
    public static final String NAME_PROPERTY
        = "Extension-Name";
    // A property for the icon of the shape.
    public static final String ICON_PROPERTY
        = "Extension-Icon";
    // A property for the class of the shape.
    public static final String CLASS_PROPERTY
        = "Extension-Class";

    // Method to draw the shape of the extension.
    public void draw(Graphics2D g2, Point p);
}



  

Extension-Based Paint Program
• Extension bundles include extension-

related metadata in their JAR manifest
– for example...

...
Extension-Name: Circle
Extension-Icon: org/apache/felix/circle/circle.png
Extension-Class: org.apache.felix.circle.Circle
...



  

Extender-Based Shape Tracker
• Recall goal of the Shape Tracker

– Use Inversion of Control principles to inject 
shapes into application

• Puts tracking logic in one place
• Isolates application from OSGi API

• Implemented as custom “bundle tracker”
– Uses similar whiteboard pattern, but for 

installed bundles
– Listens for bundle events

• Specifically, STARTED and STOPPED events
• Probes bundle manifests to see if bundles provide 

shape extensions



  

Example Application 
Demo







  





Advances Issues



  

Bundled vs. Hosted
• Applications can leverage OSGi 

functionality in two ways
– Build entire application as a set of bundles 

that will run on top of a framework instance
– Host a framework instance inside application 

and externally interact with bundles/services



  

Bundled vs. Hosted
• Building application as a set of bundles is 

the preferred approach
– Allows application to run on any framework
– Not always possible for legacy applications

• Hosting framework instance allows 
piecemeal OSGi adoption
– Will likely tie application to a framework 

implementation



  

Hosted Framework
• More complicated since due to 

external/internal gap
– e.g., unlike bundles, the host application 

does not have a bundle context by which it 
can access framework services

• Required host/framework interactions
– Accessing framework functionality
– Providing services to bundles
– Using services from bundles



  

Hosted Framework
• Felix tries to simplify hosted instance 

scenarios
– All configuration data is passed into 

constructor
– Felix framework implements Bundle 

interface and acts as the System Bundle
• Gives the host application an intuitive way to 

access framework functionality

– Felix constructor also accepts “constructor 
activators” to extend system bundle

– Felix tries to multiplex singleton resources to 
allow for multiple framework instances



  

Hosted Framework

// Define configuration properties
Map configMap = new StringMap(false);
configMap.put(..., ...);
...
// Create application activators
List list = new ArrayList();
list.add(new Activator());

try {
    // Create a framework instance
    Felix felix = new Felix(configMap, list);
    // Start framework instance
    felix.start();
    ...
    // Stop framework instance
    felix.stop();
} catch (Exception ex) { ... }



  

Hosted Framework
• Providing a host application service
BundleContext bc = felix.getBundleContext();
bc.registerService(Service.class, svcObj, null);



  

Hosted Framework
• Providing a host application service

• Accessing internal bundle services

BundleContext bc = felix.getBundleContext();
bc.registerService(Service.class, svcObj, null);

BundleContext bc = felix.getBundleContext();
ServiceReference ref =
   bc.getServiceReference(Service.class);
Service svcObj = (Service) bc.getService(ref);



  

Hosted Framework
• Providing a host application service

• Accessing internal bundle services

• Better approach is to use a constructor 
activators since it is integrated with 
System Bundle (i.e., framework) starting 
and stopping 

BundleContext bc = felix.getBundleContext();
bc.registerService(Service.class, svcObj, null);

BundleContext bc = felix.getBundleContext();
ServiceReference ref =
   bc.getServiceReference(Service.class);
Service svcObj = (Service) bc.getService(ref);



  

Hosted Framework
• Classes shared among host application 

and bundles must be on the application 
class path
– Disadvantage of hosted framework 

approach, which limits dynamics
– Use of reflection by host to access bundle 

services can eliminate this issue, but it is still 
not an optimal solution

• In summary, better to completely bundle 
your application if possible



  

Custom Life Cycle Layer
• [placeholder]
• Can separate service and life cycle layers 

from modularity layer
• Create your own life cycle layer using the 

extender model to incorporate your own 
component model life cycle layer and/or 
component interaction layer



  


Conclusion


