
Scalable, Reliable, and Secure 

RESTful services

Stuff you need to know about REST and HTTP



What this talk is NOT

Specific 
Tools

SOAP
WS-*



For that go to:

Navigating WS-(death?)* - 17:30



Today’s talk

Intro to 
REST

Reliability

SecurityLimitations

Scalability



REST

Resources

Universal 
Interface

Cacheable

Stateless
Client/
Server

Linkable

Architec-
tural Style



The Uniform Interface

Uniform

Get(URI)

Put(URI, Resource)

Delete(URI)

Non Uniform

getCustomer()

updateCustomer(Customer)

delete(customerId);



Resources, resources, resources

 Everything is a resource

 Resources are addressable via URIs

 Resources are manipulated via verbs and the 

uniform interface



Hypertext and linkability

 Resources are hypertext

 We don’t want “keys”, we want links!

 Data model refers to other application states via 

links



From here on out…

 We’re talking about HTTP

 REST defines the architectural style of HTTP

 We’ll discuss further RESTful principles in relation 

to HTTP specifically (i.e. caching, statelessness)



Reliability through Idempotency



Our Starting Point

• Cacheable

• SAFE – no side effectsGET

• Unsafe operations, which can’t be repeatedPOST

• IdempotentPUT

• IdempotentDELETE

• SAFE – no side effects

• No message bodyHEAD



Idempotent Operations

Same 
Request

yields

Same 
Result



Some Basic Scenarios:

1. Getting resources

2. Deleting resources

3. Updating a resource

4. Creating a resource



Getting a resource

 GET is SAFE

 If original GET fails, just try, try again



ServerClient

Updating a resource

PUT Foo
Store resource

Send 200 OK
Connection 

error!

PUT Foo
Do nothing or 

store 
Resource

Send 200 OK
Receive 200 

OK

T
im

e



ServerClient

Deleting a resource

DELETE 
Foo

Delete 
resource

Send 200 
OK

Connection 
error!

DELETE 
Foo

Do nothing

Send 404 
Not Found

Already 
deleted…

T
im

e



Client Server

Creating Resources

HTTP/1.1 201 Created

Date: …

Content-Length: 0

Location: 

http://acme.com/entries/1

…

HTTP/1.1 200 OK

…

POST /entries

Host: acme.com

…

PUT /entries/1

Host: acme.com

Content-Type: …

Content-Length: …

Some data…



Creating Resources

 IDs which are not used can be

 Ignored

 Expired

 Another option: have the client generate a unique 

ID and PUT to it straight away

 They’re liable to screw it up though



Problem: Firewalls

 Many firewalls do not allow PUT, DELETE

 You might want to allow other ways of specifying 

a header:

 Google: X-HTTP-Method-Override: PUT

 Ruby: ?method=PUT



Scalability

ETags, Caching, Content-Types, URLs, and more



Statelessness

 All communication is stateless

 Session state is kept on the Client!

 Client is responsible for transitioning to new states

 States are represented by URIs

 Improves:

 Visibility

 Reliability

 Scalability



ETag Header

 Resources may return an ETag header when it is 

accessed

 On subsequent retrieval of the resource, Client 

sends this ETag header back

 If the resource has not changed (i.e. the ETag is 

the same), an empty response with a 304 code is 

returned 



Client Server

ETag Example

HTTP/1.1 200 OK 

Date: …

ETag: "3e86-410-3596fbbc" 

Content-Length: 1040 

Content-Type: text/html

…

HTTP/1.1 304 Not Modified

Date: …

ETag: "3e86-410-3596fbbc" 

Content-Length: 0…

GET /feed.atom

Host: www.acme.com

…

GET /feed.atom

If-None-Match: 

"3e86-410-3596fbbc"

Host: www.acme.com

…



Client Server

LastModified Example

HTTP/1.1 200 OK 

Date: …

Last-Modified: Sat, 29 Oct 

1994 19:43:31 GMT

Content-Length: 1040 

Content-Type: text/html

…

HTTP/1.1 304 Not Modified

Date: …

Last-Modified: Sat, 29 Oct 

1994 19:43:31 GMT

Content-Length: 0

GET /feed.atom

Host: www.acme.com

…

GET /feed.atom

If-Modified-Since: 

Sat, 29 Oct 1994 

19:43:31 GMT

Host: www.acme.com

…



Scalability through Caching

 A.k.a.“cache the hell out of it”

 Reduce latency, network traffic, and server load

 Types of cache:

 Browser

 Proxy

 Gateway



How Caching Works

 A resource is eligible for caching if:

 The response headers don’t say not to cache it

 The response is not authenticated or secure

 No ETag or LastModified header is present

 The cache representation is fresh

 From: http://www.mnot.net/cache_docs/



Is your cache fresh?

 Yes, if:

 The expiry time has not been exceeded

 The representation was LastModified a relatively long 

time ago

 If its stale, the remote server will be asked to 

validate if the representation is still fresh



Scalability through URLs and 

Content-Types

 Information about where the request is destined 

is held outside the message:

 Content-Type

 application/purchase-order+xml

 mage/jpeg

 URL

 Other headers

 Allows easy routing to the appropriate server 

with little overhead



Transactions

 The web is NOT designed for transactions
 Client is responsible for committing/rolling back 

transactions, and client may not fulfill responsibilities

 Transactions can take too long over the web and tie up 
important resources

 Much better IMO to build in 
confirmation/cancellation into your application

 This requires application specific means for 
compensation

 See the paper: Life Beyond Transactions by Pat 
Helland



Security



Question #1

 What are your goals & requirements?

 Authentication?

 Authorization?

 Privacy?

 Integrity?

 Openness?

 Eliminate hassles for users?



Tools at our disposal

 HTTP Authentication

 SSL

 XML Signature & Encryption

 Others: 

 SAML, Cardspace, OpenID…



HTTP Authentication Basics

 Basic Authentication

 Username & Password passed in plain text

 Digest

 MD5 has of username & password is created

 Sent with every request

 Remember – statelessness? 



SSL and Public Key Cryptography

 SSL/TLS defines a process to encrypt/secure 

transports

Negotiate an appropriate encryption 
algorithm 

Exchange public keys and certificates

Negotiate a “common secret” which 
allows the connection to use symmetric 
cryptography



How SSL works

Client Server

Sends random number 

encrypted with server’s 

public key.



How SSL works

Client Server

Server sends random 

number to client. 

Can be unencrypted since 

Client may not have public 

key.



How SSL works

Client Server

Server and Client compute 

a shared secret using the 

negotiated hash algorithm.

94AB134… 94AB134…



How SSL works

Client Server

Communication is 

encrypted using the new 

shared secret & symmetric 

cryptography



Client Authentication

 Server can authenticate the Client using it’s public 

key

 Requires key distribution 

 Server side must import every client public key into it’s 

keystore



Limitations of SSL

 Does not work well with intermediaries

 If you have a gateway handling SSL, how do you actually 

get the user information?

 Limited ability for other authentication tokens 

beyond those of HTTP Auth

 i.e. SAML

 Some implementations support NTLM (Commons 

HTTPClient)



XML Signature & Encryption

 Provide message level security when needed

 Limited support across languages

 Mostly Java & .NET

 Allows other types of authentication mechanisms 

beyond just SSL



An XML digital signature
<ds:Signature>

<ds:SignedInfo>

<ds:CanonicalizationMethod Algorithm=

"http://www.w3.org/2001/10/xml-exc-c14n#"/>

<ds:SignatureMethod Algorithm=

"http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

<ds:Reference URI="#mySignedElement">

<ds:Transforms>

<ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

</ds:Transforms>

<ds:DigestMethod Algorithm=

"http://www.w3.org/2000/09/xmldsig#sha1"/>

<ds:DigestValue>EULddytSo1...</ds:DigestValue>

</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue>

BL8jdfToEb1l/vXcMZNNjPOV...

</ds:SignatureValue>

<ds:KeyInfo>

…

</ds:KeyInfo>

</ds:Signature>



Building on the Atom Publishing 

Protocol



What is Atom?

 Atom: a format for syndication 

 Describes “lists of related information” – a.k.a. feeds

 Feeds are composed of entries

 User Extensible

 More generic than just blog stuff



The Bare Minimum
<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">

<title>Example Feed</title>
<link href="http://example.org/"/>
<updated>2003-12-13T18:30:02Z</updated>
<author>

<name>John Doe</name>
</author>
<id>urn:uuid:60a76c80-d399-11d9-b91C-0003939e0af6</id>

<entry>
<title>Atom-Powered Robots Run Amok</title>
<link href="http://example.org/2003/12/13/atom03"/>
<id>urn:uuid:1225c695-cfb8-4ebb-aaaa-

80da344efa6a</id>
<updated>2003-12-13T18:30:02Z</updated>

</entry>

</feed>



Atom retargeted for employee info
<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">

<title>Employees</title>
<link href="http://acme.com/hr/employees"/>
<updated>2003-12-13T18:30:02Z</updated>
<author>
<name>Acme Inc.</name>

</author>
<id>urn:uuid:60a76c80-d399-11d9-b91C-0003939e0af6</id>

<entry>
<title>John Doe</title>
<link href="http://acme.com/hr/employees/john_doe"/>
<id>urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efa6a</id>
<updated>2003-12-13T18:30:02Z</updated>
<acme:EmployeeInfo>

…
</acme:EmployeeInfo>

</entry>

</feed>



What is the Atom Publishing Protocol?

 Create, edit, delete feeds and entries 

 GET feeds

 Includes paging support

 Properly uses HTTP so can be scalable, reliable 

and secure

 Implemented by a variety of clients and servers

 Abdera, Amplee, blog stuff*, etc



Why you should use APP for our app

 There are many APP implementations and they 

are known to work well together

 Atom format is well understood 

 You can leverage existing solutions for security 

 HTTP Auth, WSSE, Google Login, XML Sig & Enc

 Eliminates the need for you to write a lot of 

server/client code

 ETags, URLs, etc are all handled for you



What other tools are available?

 Java

 Servlets

 Restlets

 Spring MVC

 CXF 

 Axis

 Ruby on Rails

 Python’s Django

 Javascript’s XMLHttpRequest 



Limitations (Constraints) of 

REST & HTTP



Conclusions

 HTTP Provides many tools/properties for us to build 
scalable, reliable, secure systems:
 Idempotent and safe methods

 ETags/LastModified

 Hypertext

 Caching

 URLs & Content Types

 SSL

 Beyond HTTP
 Atom

 XML Signatures & Encryption

 Much more… (Open ID, SAML, RDF, etc)



Limitations

 HTTP is NOT an RPC or message passing system

 Not good for sending event based messages

 May have performance constraints for asynchronous 

messaging that JMS/others may not have

 Security Standards

 Most people will just use SSL, but…

 Exchanging other types of authentication tokens is not 

possible unless they are custom HTTP headers

 No way to establish trust relationships beside 

certificate hierarchies/webs



Questions?

 Blog: http://netzooid.com/blog

 Email: dan@envoisolutions.com


