
Navigating WS-(death?)*

Our Starting Point

 Message Oriented

 Transport Agnostic

 SOAP

 If you want to question these points, lets grab a

beer later!

What this talk is not about

Vendor
Stuff

REST

SOAP
& WS

bashing

Goals

 Discover the major specifications associated with

SOAP

 Discover the motivations for these specifications

 Discover how these specifications can be

composed

 Answer:

 When should I use WS-Foo?

 What platforms and toolkits interoperate with WS-

Foo?

 Where is WS-Foo going in the future?

The Major Specifications

 WS Addressing

 WS Policy & Friends

 WS Reliable Messaging & Friends

 WS SX

 WS Security

 WS Secure Conversation

 WS Trust

Some of the “less major” specifications

 WS-AtomicTransactions

 WS-BusinessActivity

 WS-Coordination

 WS-DistributedManagement

 WS-Eventing

 WS-MetadataExchange

 WS-Notification

 WS-Transfer

 Others…

WS-Addressing

WS-Addressing

 SOAP works with any transport

 If there is no URL, how do we address services?

 Example: JMS only has queues and topics

 How do we address multiple services hosted at

the same endpoint?

 How do we tell the endpoint where to send

replies?

 And faults?

 How do we reference a specific message?

Concepts

 Action: the action to be taken by the message

 Message ID: Unique id which makes it possible to

reference the message

 To: A URI which represents the server being

addressed

 ReplyTo: EPR telling the server where to send

replies

 FaultTo: EPR telling the server where to send

faults

Endpoint Reference

 An endpoint reference is the equivalent of URIs

for web services

 Includes:

 Address

 PortType

 ReferenceParameters

 ServiceName

 Only address is required (and typically the only

one used)

Example
<S:Envelope …>
<S:Header>
<wsa:MessageID>http://example.com/6B29FC40-CA47-1067-
B31D-00DD010662DA</wsa:MessageID>
<wsa:ReplyTo>
<wsa:Address>
http://example.com/business/client1

</wsa:Address>
</wsa:ReplyTo>
<wsa:To>

http://example.com/fabrikam/Purchasing
</wsa:To>
<wsa:Action>

http://example.com/fabrikam/SubmitPO
</wsa:Action>

</S:Header>
<S:Body>

...
</S:Body>
</S:Envelope>

WS-Addressing Versions

 2004-08

 First version to pick up real adoption.

 Used in WS-ReliableMessaging 1.0

 2005-08:

 In most major frameworks: XFire, CXF, Axis, WCF

 1.0

 Recently standardized

When should I use it?

 If you’re addressing multiple services on the same

endpoint

 If you’re using non addressable transports

 If you’re using another specification which relies

on it (i.e. WS-RM)

WSDL binding

 WS-Addressing defines a binding to put

addressing information inside the WSDL

 Supported as part of JAX-WS 2.1 and WC

WSDL Binding

<binding …>

<wsaw:UsingAddressing

wsdl:required="true" />

<operation>

…

</operation>

</binding>

WSDL Binding

<portType name=“customerService">

<operation name=“getCustomer">

<input message="tns:getCustomer"

wsaw:Action="http://foo.com/getCustomer"/>

<output message="tns:getCustomerResponse"

wsaw:Action="http://foo.com/getCustomerResponse"/>

</operation>

</portType>

The Matrix

Version Axis 2 CXF Glassfish JBossWS .NET/WS

E 2.0

.NET/WS

E 3.0

XFire WCF

03/04 X

08/04 X X X X X X X

08/05 X X X

05/06 (1.0) X X X X X

WS-ReliableMessaging & Friends

WS-ReliableMessaging

 Not all transports are reliable

 Notably HTTP

 How do we ensure that:

 Each message was received?

 In order?

 And only once?

Main Concepts

 A series of message exchanges between a client

and server is called a sequence

 CreateSequence establishes a sequence

 Each message contains a SequenceId

 Every so often a SequenceAcknowledgement is sent

 TerminateSequence ends the sequence

C
lie

n
t

Se
rv

e
r

Create Sequence

Create Sequence

Response

Message 1

Message 2

Ack 1 & 2

Sequence Creation

<s:Envelope>

<S:Body>

<wsrm:CreateSequence>

<wsrm:AcksTo>

<wsa:Address>

http://Business456.com/serviceA/789

</wsa:Address>

</wsrm:AcksTo>

</wsrm:CreateSequence>

</S:Body>

</S:Envelope>

CreateSequenceResponse

<S:Body>

<wsrm:CreateSequenceResponse>

<wsrm:Identifier>

http://Business456.com/RM/ABC

</wsrm:Identifier>

</wsrm:CreateSequenceResponse>

</S:Body>

Normal Message Exchange
<s:Envelope>

<S:Header>

<wsa:MessageID>…</wsa:MessageID>

<wsa:To>http://example.com/serviceB/123</wsa:To>

<wsa:From>

<wsa:Address>http://Business456.com/serviceA/789</wsa:Address>

</wsa:From>

<wsa:Action>http://example.com/serviceB/123/request</wsa:Action>

<wsrm:Sequence>

<wsrm:Identifier>

http://Business456.com/RM/ABC

</wsrm:Identifier>

<wsrm:MessageNumber>1</wsrm:MessageNumber>

</wsrm:Sequence>

</S:Header>

<S:Body>

<!-- Some Application Data -->

</S:Body>

</S:Envelope>

Message Acknowledgement
<S:Envelope>
<S:Header>
<wsa:MessageID>…</wsa:MessageID>
<wsa:To>http://Business456.com/serviceA/789</wsa:To>
<wsa:From>
<wsa:Address>http://example.com/serviceB/123</wsa:Address>

</wsa:From>
<wsa:Action>
http://docs.oasis-open.org/ws-
rx/wsrm/200608/SequenceAcknowledgement

</wsa:Action>
<wsrm:SequenceAcknowledgement>
<wsrm:Identifier>
http://Business456.com/RM/ABC

</wsrm:Identifier>
<wsrm:AcknowledgementRange Upper="1" Lower="1"/>
<wsrm:AcknowledgementRange Upper="3" Lower="3"/>

</wsrm:SequenceAcknowledgement>
</S:Header>
<S:Body/>
</S:Envelope>

Firewall

Client

One way
message

Server

Firewall issues

 Server has to send an acknowledgement and lost

messages back to the client

 What if there is a firewall?

No response

channel!

Firewall Issues

 SequenceAcknowledgement can be piggybacked

on one way synchronous response

 Even though that’s really against the BasicProfile…

 WS-RM 1.1 introduces a MakeConnection

operation

 Client sends MakeConnection to the server

 Server can respond with any messages it wants to send

Order and delivery assurances

 WS-RM 1.1 removes in order and exactly once

delivery requirements from the spec

 These are really the responsibility of your WS-RM

implementation

 There are no durability assurances from provider

to provider.

WS-RM Roadmap

OASIS

WS-
ReliableMessaging

1.1

WS-RX
Committee

WS-
ReliableMessaging

1.0

WS-
ReliableMessaging

Committee
WS-Reliability 1.0

When should I use WS-RM?

 Need delivery assurances over an unreliable

protocol (HTTP)

 Reliability is not built into the application

The Matrix
Version Axis 2 CXF Glassfish JBossWS .NET/W

SE 2.0

.NET/W

SE 3.0

WCF Systinet

WS-RM

1.0

X X X X X X

WS-RM

1.1 (not

final)

X

WS-Policy

WS-Policy

 If my service uses WS-ReliableMessaging or WS-

Security or MTOM or… how will consumers

know?

 Out of band communication

 Or WS-Policy...

What is WS-Policy

“WS-Policy provides a flexible and extensible

grammar for expressing the capabilities,

requirements, and general characteristics of

entities in an XML Web services-based system.

WS-Policy defines a framework and a model for

the expression of these properties as policies.”

Example

<wsp:Policy

xmlns:sp="http://../securitypolicy"

xmlns:wsp=“http://../policy">

<wsp:ExactlyOne

<sp:Basic256Rsa15 />

<sp:TripleDesRsa15 />

</wsp:ExactlyOne>

</wsp:Policy>

What kind of policies are there?

 WS-ReliableMessaging

 WS-Security (includes HTTP transport related

assertions)

 MTOM

 Addressing (in development)

WS-RM Example

<wsp:Policy wsu:Id=“RmPolicy”>

<rmp:RMAssertion>

<rmp:InactivityTimeout

Milliseconds="600000" />

<rmp:BaseRetransmissionInterval

Milliseconds="3000" />

<rmp:ExponentialBackoff />

<rmp:AcknowledgementInterval

Milliseconds="200" />

</rmp:RMAssertion>

</wsp:Policy>

What frameworks support WS-Policy?

Spec Axis2 CXF Glassfish .NET WSE

3.x

.NET WCF Systinet

1.2 X X X X X X

1.5 X X

MTOM X X

WS-RM X X X

SecurityPolicy X X X X X?

A segue about public key

cryptography

The adventures of Alice, Bob and Eve

Public Key Cryptography

 Encryption and Signing are done with public and

private keys

 Public key is advertised to the world

 Private key is your SECRET

 Asymmetric cryptography

 Slower than symmetric where there is a shared key

Key Creation

Public Key Encryption

Public Key Signature

Shared Secrets

WS-Security

WS-Security

 Includes mechanisms for

 Encrypting messages

 Signing messages

 Setting expiration dates for messages

 Sending authentication tokens

 Builds heavily on the XML Signature and

Encryption publications

Why?

 Sometimes we want message level security

 Intermediaries

 Multiple readers

 Need a standard way to exchange a variety of

security token types

Security tokens

 Defines an abstract way to represent security

tokens:

 UsernameToken

 BinarySecurityToken (X.509, Kerberos)

 Other XML tokens - SAML

 UsernameToken:

 Support both a password digest and clear text

 Clear text should only be used if the transport is

secure and there are no intermediaries

Example: UsernameToken Header

<wsse:Security xmlns:wsse=“…">

<wsse:UsernameToken Id="MyID">

<wsse:Username>Zoe</wsse:Username>

<wsse:Password>pass</wsse:Password>

</wsse:UsernameToken>

</wsse:Security>

Example: BinarySecurityToken Header

<wsse:BinarySecurityToken

ValueType="...#X509v3“

EncodingType="...#Base64Binary“

wsu:Id="X509Token">

MIIEZzCCA9CgAwIBAgIQEmtJZc0rqrKh5i…

</wsse:BinarySecurityToken>

Signature

 Various parts of the SOAP Body can be signed

 The signatures reside in the SOAP Header

 A signature references a message part via a wsu:Id

attribute

Canonicalization

 Before we can sign a document, we must agree on

how that document is represented

 If the xml attributes are in a different order on

either side, the signature value will differ

 We must canonicalize the document to avoid

these problems.

A digital signature part 1
<Envelope>
<Header>
<Signature>…</Signature>
<BinarySecurityToken

ValueType="...#X509v3“
EncodingType="...#Base64Binary“
wsu:Id="X509Token">
MIIEZzCCA9CgAwIBAgIQEmtJZc0rqrKh5i...

</BinarySecurityToken>
</Header>
<Body wsu:Id=“myBody”>
<FooBar>
…

</FooBar>
</Body>

</Envelope>

A digital signature part 2
<ds:Signature>
<ds:SignedInfo>

<ds:CanonicalizationMethod Algorithm=
"http://www.w3.org/2001/10/xml-exc-c14n#"/>

<ds:SignatureMethod Algorithm=
"http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

<ds:Reference URI="#myBody">
<ds:Transforms>

<ds:Transform Algorithm=
"http://www.w3.org/2001/10/xml-exc-c14n#"/>

</ds:Transforms>
<ds:DigestMethod Algorithm=

"http://www.w3.org/2000/09/xmldsig#sha1"/>
<ds:DigestValue>EULddytSo1...</ds:DigestValue>

</ds:Reference>
</ds:SignedInfo>
…

A digital signature part 3

…

<ds:SignatureValue>

BL8jdfToEb1l/vXcMZNNjPOV...

</ds:SignatureValue>

<ds:KeyInfo>

<wsse:SecurityTokenReference>

<wsse:Reference URI="#X509Token"/>

</wsse:SecurityTokenReference>

</ds:KeyInfo>

</ds:Signature>

Encryption

 Uses XML-Encryption standard to encrypt

various parts of the message

 Encrypted data can use a key that is:

1. Exchanged out of band

2. Inside the message (Symmetric)

Encryption
<Envelope>
<Header>
<Signature>
<xenc:ReferenceList>
<xenc:DataReference URI="#bodyID"/>

</xenc:ReferenceList>
</Signature>

</Header>
<Body>
<EncryptedData Id="bodyID">
<ds:KeyInfo>

<ds:KeyName>CN=Hiroshi Maruyama,
C=JP</ds:KeyName>

</ds:KeyInfo>
<xenc:CipherData>
<xenc:CipherValue>...</xenc:CipherValue>

</xenc:CipherData>
</EncryptedData>

</Body>
</Envelope>

Timestamps and Message Expiration

 Need a way to say that a message is only valid up

to a certain time

 Prevents replay attacks to some extent

Timestamp example
<Envelope>
<Header>
<wsse:Security>
<wsu:Timestamp wsu:Id="timestamp">
<wsu:Created>
2001-09- 13T08:42:00Z

</wsu:Created>
<wsu:Expires>
2001-10-13T09:00:00Z

</wsu:Expires>
</wsu:Timestamp>
...

</wsse:Security>
</Header>
…
</Envelope>

Who supports WS-Security

 Better question: who doesn’t?

 Dynamic languages…

Where WS-Security falls short

 It depends on public key cryptography which is

slow

 There is no way to establish trust relationships

 Out of band communication is required unless

you’re trusting all certificates from a specific

authority

WS-Trust

What is it?

 Defines a Security Token Service

 A way to broke trust relationships through the

exchange of security tokens

 Trust must still be bootstrapped out of band.

 Issue, renew, validate, cancel and challenge

security tokens

 The building block of WS-SecureConversation

Problem #1: Token is not understood

 If an endpoint does not understand a particular

token, WS-Trust allows the endpoint to exchange

that token type for another

 Example: Client sends X.509 certificate, server

expects SAML

Exchanging X.509 certificate for SAML

Client sends
X.509 signed

request

Gateway verifies
signature (does
not imply trust)

Gateway sends
X.509 to STS

STS sends back
SAML assertion

Gateway re-signs
message and

sends to server

Server verifies
SAML signature

Example Request

<soap:Body>

<wstrust:RequestSecurityToken>

<wstrust:TokenType>SAML</TokenType>

<wstrust:RequestType>

ReqExchange

</RequestType>

<wstrust:OnBehalfOf>

<ws:BinarySecurityToken

id="originaltoken"

ValueType="X.509>

sdfOIDFKLSoidefsdflk …

</ws:BinarySecurityToken>

</wstrust:OnBehalfOf>

</wstrust:RequestSecurityToken>

</soap:Body>

Example Response

<soap:Body>

<wstrust:RequestSecurityTokenResponse>

<wstrust:TokenType>SAML</TokenType>

<wstrust:RequestedSecurityToken>

<saml:Assertion>

…

</saml:Assertion>

</wstrust:RequestedSecurityToken>

</wstrust:RequestSecurityTokenResponse>

</soap:Body>

Problem #2: Token is untrusted

 If A trusts B and B trusts C, does A trust C?

 WS-Trust server can store and manage trust

relationships for you

Problem #3: How do I issue new tokens?

 What if we don’t want to use asymmetric

cryptography?

 What if we want to create a shared secret for

symmetric cryptography?

 WS-Trust allows issuance of new tokens

WS-SecureConversation

Why?

 Problem:

 WS-Security is inherently slow as it revolves around

public key cryptography. Symmetric cryptography allows

us to speed things up

 No way to reference established security sessions

Security Contexts

 Refers to an established authentication state and

negotiated keys

 A SecurityTokenContext is the on-the-wire

representation of this state

A digital signature with WS-SC

<SecurityTokenContext wsu:Id=“SomeID”>

<Identifier>uuid:…</Identifier>

</SecurityTokenContext>

<ds:Signature>

<ds:SignatureValue>

BL8jdfToEb1l/vXcMZNNjPOV...

</ds:SignatureValue>

<ds:KeyInfo>

<wsse:SecurityTokenReference>

<wsse:Reference URI="#SomeID"/>

</wsse:SecurityTokenReference>

</ds:KeyInfo>

</ds:Signature>

What does this give us

 Using WS-Trust we can issue a new security token

based on a shared secret

 This token can be used to create symmetrically

encrypted messages – which is much faster

 Also allows us to create security sessions

Takeaways

Interoperability

 Java & .NET exhibit strong interoperability for the

major specifications

 Most have been battle tested for a while

Dynamic Languages

 There are no dynamic languages which have open

source WS-* implementations at the moment

 Some movement by the Axis2 community to

provide a C version for PHP, Ruby, etc.

 However – there is no love in general from the

dynamic language community for WS-*

WS-* Thoughts

 I don’t see equivalent security solutions elsewhere

in the “Just HTTP” world

 Might be one of the killer applications of WS-*

 Message Oriented + Transport Neutral leads to

WS-Addresing & WS-RM

 Instead of URIs and Idempotent Operations

 Limited understanding, uneasiness about

interoperability, and concerns about the future of

WS-* is a hindrance to adoption

Questions?

 Blog: http://netzooid.com

 Email: dan@envoisolutions.com

