
1

Scalable Internet Architectures
how to build scalable production Internet services and...

how not to build them

2

open-source developer
mod_backhand, wackamole, Daiquiri,
Spread, OpenSSH/SecurID,
a variety of CPAN modules, etc.

closed-source developer
Ecelerity (MTA), EC Cluster (MTA Clustering)

open-source advocate
Closed source software has technical risk.

closed-source advocate
It’s about business, not software. Finding the right tool for
the job sometimes leads to closed-source solutions.

A bit about the speaker
Principal Consultant
OmniTI Computer Consulting, Inc.

3

What is Scalability?

How well a solution to some
problem will work when the size of
the problem increases.

What’s missing?

... when the size decreases
the solution must fit

Definition:

4

high uptime

low maintenance

formal procedures

cost controlled

Production Environments

5

parallel servers
all servers are live and can handle transactions

cheap and common for web servers
expensive for databases

hot spare/standby
fail-over system that is seamless and immediate (automated)

common for HA/LB solutions
many databases have built-in facilities providing hot-spare service

warm spare/standby
fail-over system is nearly immediate, but not seamless (not automated)

common technique for databases, cheap and easy

cold spare/standby
“I have the equipment and backups to get it running if it were to fail.”

High Uptime
Availability despite individual system failures

6

Contributing factors:

The number of unique required products in the architecture

The stability and “replaceability” of required products

Uneducated development and implementation decisions

The complexity and frequency of staging and pushing new code

Maintenance
The single largest expense in most environments

7

• developer code review

• religious use of revision control

• planned and reviewed upgrade strategies

• intelligent, low-cost (resources) push
procedures

Formal Procedures

“Scalability marginally impacts procedure
Procedure grossly impacts scalability”

8

optimize where it counts

complexity has costs

use the right tool

Three Simple Rules

9

Good
improving execution time by 50%

of code that executes 2% of the time
results in 1% performance improvement

Better
improving execution time by 10%

of code that executes 80% of the time
results in 8% performance improvement

Three Simple Rules
#1: Amdahl’s Law

10

adding an additional
architectural component
to a service or set of
services increases the
system complexity
linearly

requiring an additional
architectural component
for a service increases
the system complexity
exponentially

Three Simple Rules
#2: Complex architectures are expensive

11

using a tool because it is easy
or familiar doesn't make it right

it is often a gratuitous waste of
resources

white papers are marketing
tools and may not represent the
most practical solution

it’s about good design and
implementation practices

Three Simple Rules
#3: Using the wrong tool is expensive (and stupid)

12

Building Production Systems

13

Production Fundamentals

understand the stability of the software

understand the velocity of development

understand administrative aspects

understand the likelihood of failure
 and the support for each component

14

Software Stability

Stability is not just reliability

Also consider:

release cycles

upgrade paths

feature additions,
“deprications”, and removals

15

The Need For Speed
vs.

The Need For Control

Understand the velocity of development

For Small Projects: use revision control

For Large Projects: use revision control

For ALL Projects: use revision control

No revision control?

Accident waiting to happen

16

The Need For Speed
vs.

The Need For Control

Unchecked speed is costly

Rapid release cycles (once/day) are needed in some
businesses

An equilibrium must achieved or the situation will explode

Properly used revision control allows for speed and
control

It is challenging, but meticulous unwavering adherence to
policy and procedure will deliver you from disaster.

17

Administration

This deserves a lot of attention
(despite the single slide here)

Systems Administration costs money
Short release cycles on components means perpetual administration

Constant change in development product results in different stress on:

Databases, Networks, Systems... and the people that maintain them

Adding components or complicating the architecture complicates:

Monitoring

Upgrading

Scaling down should the need arise

18

Likelihood of Failure
(the hidden administrative nightmare)

Internally Developed Application Failures Suck.

Third-Party Component Failures Suck More!
It is seen as an administration responsibility

Regardless if developers dictated their inclusion in the architecture

SAs, NAs, and DBAs suddenly become responsible for the ongoing
maintenance of all third-party products -- open source or commercial

This is often beyond the expertise/attention of the individual or team

Systems fail, it’s part of life

Chronic problems and failures will explode your TCO

19

Likelihood of Failure
(solution to the hidden administrative nightmare)

Don’t leave “requirement” assessments at:
“This won’t work... but you’re the boss”

Worst
implementing something that won’t work

being responsible for making it work

getting fired for perceived incompetence

Bad
getting fired for refusing to implement something that has no hope of
working

Best
work with the development team to revise requirements and
architectural needs

20

Clustered Image Serving

21

Goal

Static image serving

120MBs throughput

24x7 uptime requirements

Three geographically distributed sites

22

Decisions
high uptime

HA/LB HA/LB

Apache Apache Apache

Users Users

Apache
HA Apache

HA Apache
HA

“White Paper” Approach

expensive, dedicated, single-
purpose

HA/LB devices

Peer-based HA

cheap and reusable
commodity machines

23

The Tired Tiered Approach

Pros:
Fine-grained, connection-based request
distribution (load balancing)
100,000+ concurrent connections
Session management (sticky)
One IP per service

Cons:
Expensive
Single purpose
Your HA solution needs HA!!!
3 locations requires 6 units
High maintenance
(additional hardware component)

24

Pros:
No specialized hardware
Low maintenance
(software daemon)
Simple
Free

Cons:
Naïve load balancing (DNS RR)
Requires multiple IPs for a single
service (bad for multi-SSL)

Peer-based HA
Wackamole

25

Pushing content
Even for small (~100Mb) image repositories, pushes are
expensive

dumb protocols have horrible network costs
rsync still incurs substantial I/O for each “mirror”
multicast rsync could work, but there are no solid
implementations

Pulling content
Assuming a slow rate of change, cache-on-demand is solid

Use Apache + mod_proxy (Reverse Proxy + Caching)
Fine-grained cache purging is a challenge

Policy & Procedure

26

Goal
200Mbs throughput requirement
The goal is lower latency
only 2 web servers per site needed for fault tolerance

Traditional “White Paper” Approach
3 x dual HA/LB
3 x 2 image web servers

Peer-based HA Solution
3 x 2 image web servers

Scaling Up
3 Sites

3 x 2 x $10000
+ 3 x 2 x $2000

$72000

3 x 2 x $2000
$12000

27

Goal
10Mbs throughput requirement
The goal is lower latency
only 2 web servers per site needed for fault tolerance

Traditional “White Paper” Approach
dual HA/LB
2 image web servers

Peer-based HA Solution
2 image web servers

Scaling Down
1 Site

2 x $10000
+ 2 x $2000

$24000

2 x $2000
$4000

28

Each box running FreeBSD 5-stable
http://www.freebsd.org/

Spread v3.17.3
http://www.spread.org/

wackamole 2.1.2
http://www.backhand.org/wackamole/

Apache 1.3.33/mod_ssl + mod_proxy + patches
http://www.apache.org/
http://www.omniti.com/~george/

Technical Details

29

Spread: What is it?

Group Communication
Messaging Bus
Membership

Clear Delivery Semantics
Reliable or Unreliable
FIFO, Causal
Agreed, Safe
View of membership for delivery

Fast and Efficient
N subscribers != N x bandwidth
Multicast or broadcast

Usable
C, Perl, Python, Java, PHP, Ruby API

30

Spread: Configuration
New Jersey Site
Spread_Segment 225.0.1.1:4803 {
 image-0-1 a.b.c.101
 image-0-2 a.b.c.102
}

San Jose Site
Spread_Segment 225.0.1.2:4803 {
 image-1-1 d.e.f.101
 image-1-2 d.e.f.102
}

Germany Site
Spread_Segment 225.0.1.3:4803 {
 image-2-1 g.h.i.101
 image-2-2 g.h.i.102
}

Internet

segment
1

segment
2

segment
3

im
age-2-1

im
ag

e-
1-

2

im
age-2-2

im
ag

e-
1-

1

im
ag

e-
0-

1

im
ag

e-
0-

2

31

Wackamole: Configuration
Spread = 4803
SpreadRetryInterval = 5s
Group = wack1
Control = /var/run/wack.it

Prefer None
VirtualInterfaces {
	 { fxp0:a.b.c.111/32 }
	 { fxp0:a.b.c.112/32 }
}

Arp-Cache = 90s
Notify {
	 fxp0:a.b.c.1/32
	 fxp0:a.b.c.0/24 throttle 16
	 arp-cache
}

balance {
 AcquisitionsPerRound = all
 interval = 4s
}
mature = 5s

Spread = 4803
SpreadRetryInterval = 5s
Group = wack1
Control = /var/run/wack.it

Spread Daemon & Group

Prefer None
VirtualInterfaces {
	 	 { fxp0:a.b.c.111/32 }
	 	 { fxp0:a.b.c.112/32 }
}

Virtual Interfaces
Controlled

Arp-Cache = 90s
Notify {
	 	 fxp0:a.b.c.1/32
	 	 fxp0:a.b.c.0/24 throttle 16
	 	 arp-cache
}

Notifications of
ownership

balance {
 AcquisitionsPerRound = all
 interval = 4s
}
mature = 5s

Balancing parameters

32

Apache: Configuration
Don’t act as a free image caching service!
<Directory proxy:*>
 deny from all
</Directory>

But act provide service to us
<Directory proxy:http://www.example.com/*>
 allow from all
</Directory>

RewriteEngine on
RewriteLogLevel 0
RewriteRule ^proxy: - [F]
RewriteRule ^(http:|ftp:) - [F]
RewriteRule ^\/*([^\/]+)(.*)$ http://$1$2 [P,L]
RewriteRule .* - [F]

ProxyRequests on
CacheRoot /data/cache
CacheSize 5120000
ProxyPassReverse / http://www.example.com/

33

Why patch mod_proxy?

mod_proxy hashes URLs for local caching
better distribution of files over directories
nice to your filesystem
good for forward caches
makes purging individual URLs less intuitive

Patched to write intuitive filenames
a URL like: http://www.example.com/logo.gif
becomes /data/cache/www.example.com/logo.gif
SAs can troubleshoot issues with certain URLs
cached files can be purged easily with ‘rm’
use Spread to distribute and coordinate cache purging operations

34

We have three mini-clusters installed and
configured, ready to throw bits by the
trillions

How people find them?
 ...DNS, obviously

How do people find the closest cluster to
them?
 ...clever DNS, [not so] obviously

The Next Step

35

Application is responsible

Use HTTP redirects:
images-sj.example.com
images-nj.example.com
images-de.example.com

Replica Location
server-side redirection

36

DNS Provides
Convergence

Can take hours/days

DNS servers near
clusters:

ns-sj.example.com
ns-nj.example.com
ns-de.example.com

Replica Location
Proximity-based DNS

37

DNS servers near clusters:
ns-sj.example.com
ns-nj.example.com
ns-de.example.com

All DNS servers have the
same IP

Network block is
announced from all sites
via BGP

Routing protocols provide
immediate convergence

Replica Location
DNS Shared IP (a.k.a. AnyCast)

38

Web Cluster Logging

39

The Setup and The Goal

Cluster of web servers
Apache
thttpd

Logs are vital
must be stored in more than
one place

Real-time assessments
hit rates
load balancing
HTTP response code rates

40

Traditional Configuration
Local Logging, Post-process Aggregation

Log written locally on web servers
space must be allocated

Consolidation happens periodically
crashes will result in missing data
aggregators must preserve chronology (expensive)
real-time metrics cannot be calculated

Monitor(s) must run against log server
monitors must tail log files
requires resources on the logging server

41

Traditional Configuration
Local Logging, Post-process Aggregation

42

TCP/IP or UDP/IP Logging
Syslog, Syslog-NG

Logs are written directly to logging server(s)
UDP is unreliable and thus not useful
TCP is a point-to-point protocol

Two logging servers means all info gets sent twice.
Add a monitor and that’s three times!

Real-time metrics can now be collected
monitors must still be run against log servers
(or the publishers must be reconfigured)

43

TCP/IP or UDP/IP Logging
Syslog, Syslog-NG

44

Passive Network Logging
sniffers

Requires no modification of architecture
Add/remove publishers (web severs) on-the-fly

Drops Logs!
When tested head-to-head with traditional logging mechanisms we
see loss
“Missing” logs are unacceptable

Clean the white dust off your upper lip and
choose another implementation

45

Reliable Multicast Logging
mod_log_spread

Flexible Operations
Add/remove publishers (web severs) on-the-fly
Add/remove subscribers (loggers/monitors) on-the-fly

Reliable Multicast (based on Spread)
Multiple subscribers don’t incur addition network overhead

Individual real-time passive and active monitors
Monitors can be “attached” without resource consumption concerns
Passive monitors that draw graphs, assess trends, detect failures
Active monitors that feed metrics back into a production system

Who’s online
Real-time page access metrics

46

Reliable Multicast Logging
mod_log_spread

47

mod_log_spread
“The Publisher”

mod_log_spread is really a patch to mod_log_config

Like pipes in mod_log_config:
 “|/path/to/rotatelogs filename 3600”

mls adds a Spread group destination:
	 $groupname

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\" %T" combined
CustomLog $example combined

48

spreadlogd
“The Subscriber”

spreadlogd writes logs...

BufferSize = 65536

Spread {
 Port = 4803
 Log {
 RewriteTimestamp = CommonLogFormat
 Group = "example"
 File = /data/logs/apache/www.example.com/combined_log
 }
}

49

Other Real-Time Tools
“Other Subscribers”

ApacheTop
C++ “top”-style
real-time hit display

mls_mon
graphical hit rates
by server and by
code

50

Caching Architectures

clients

cache

application

51

What is a cache?

A small fast memory holding recently
accessed data, designed to speed up
subsequent access to the same data. Most
often applied to processor-memory access
but also used for a local copy of data
accessible over a network etc.

Cache:

52

The Layered Cache

Exists above/in-front

Knows little or nothing about what’s
underneath

Works fabulously for static data (like
images)

clients

cache

application

53

The Integrated Cache

Exists in the application.

Knows the data and how the
application uses it.

Works well for data that doesn’t
change rapidly but is relatively
expensive to query.

cache

application

DB

DB

54

The Data Cache

Exists in the data store

Knows the data, the queries and how
the data has changed.

Works well always
called computational reuse
oldest trick in the book

MySQL 4 has this
they call it a Query Cache

cache

application

DB

55

Write-thru Cache

Occurs at update location

Knows the data, the app, the queries
and how the data has changed.

Works well for administrative
updates

many WebLogs work this way

Can be very adaptive and flexible

cache

application

admin

56

News site
News items are stored in Oracle
User Preferences are stored in Oracle

Hundreds of different sections
Each with thousands of different articles

Pages:
1000+ hits/second
shows personalized user info on EVERY page
front page shows top NF articles for forum F (limit 10)

A “Real-World” Example

57

Oracle is fast enough
why abuse Oracle for this purposes?
surely there are better things for Oracle to be doing

Updates are controlled
updates to news items only happen from a publisher
news update:read ratio is miniscule
user preferences are only ever updated by the user

The Approach

58

Article publishing
sticks news items in Oracle

The straight forward way
http://news.example.com/news/article.php?id=12345
page pulls user prefs from cookie
(or bounces off a cookie populator)
page pulls news item from database

I hate query strings
I like: http://news.example.com/news/items/12345.html

Articles

RewriteRule ^/news/items/([^/]*).html$ /www/docs/news/article.php?id=$1 [L]

59

We pull the item that is likely to never change
cheaper if the page just hard coded the news item
writing the news article out into a PHP page is a hassle
 ... or is it?

Have the straight forward page cache it
/news/article.php writes /news/items/12345.html
as a PHP page that still expands personal info from
cookie, but has the news item content statically
included as HTML.

Articles Cached

RewriteCond %{REQUEST_FILENAME} ^/news/items/([^/]*).html
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^/news/items/([^/]*).html$ /www/docs/news/article.php?id=$1 [L]

60

Run a cache invalidator on each web server
connects to Spread as a subscriber
accepts /www/docs/news/items/####.html deletion requests
accepts full purge requests

Article publishing
stash item #### in Oracle (insert or update)
publish through Spread an invalidation of ####

Changing the look of the article pages
change article.php to have the desired effect
(and write the appropriate php cache pages)
publish through Spread a full purge

Articles Cache Invalidation

61

All news item pages require zero DB requests
the business can now make your life difficult by requesting
new crap on these pages that can’t be so easily cached

Far fewer database connections required
all databases appreciate that (Oracle, MySQL, Postgres)

Bottleneck is now Apache+mod_php
crazy fast with tools like APC
inherently scalable... just add more web servers
room for more application features

The Result

62

Tiered Architectures

63

Why Tier?

Dedicate resources to specific components
Often a good approach to scaling systems up
Requiring single purpose components is a good way to lock into a big
(expensive) architecture

Tiers make computer science problems easier
Understand the trade off of solving hard problems vs. maintaining
tiered solutions

Tiers add complexity and increase maintenance
costs

More components, more pieces, more moving parts...
More can (and does) go wrong.

64

Classic Example:
Apache on dedicated web servers
Database on dedicated machine
Why? it is easy to have 4 web server, hard to have 4 databases

Lock-in Example:
Web application on several servers
Requires local session state and sticky sessions
Why? scaling down to 2 servers will still require a load balancer that can
“stick” sessions.

Dedicated Resources

65

Database Replication is hard
Anyone who tells you otherwise is lying or not telling you the
whole story

Session Replication is not so hard
use a technology like Splash!
offload responsibility to the client

Tiers are expensive technically and
financially

Some problems more difficult than tiers are expensive

Tiering to Compensate
(for problems that are hard to solve)

66

Intrinsically difficult to scale down

If it is a real production system...

Complete staging environment

Complete development environment

Tiers are expensive

67

Effective Replication
Eliminating The Need To Tier

68

Types of Database Replication
Master-Slave

a data set has a master server

changes to the data set are sent to slaves

dml must be performed at the master

read-only queries can be performed anywhere

no challenging synchronization algorithms

69

Types of Database Replication
Master-Master

data modification can be performed anywhere

coordinating ACID and XA constraints is hard
manage full transactions
view consistency
initial synchronization

synchronization algorithms
2-phase commit (2PC)
3-phase commit (3PC)

70

Types of Database Replication
Multi-Master

data modification can be performed anywhere

coordinating ACID and XA constraints is hard
manage full transactions
view consistency
initial synchronization

synchronization algorithms are complex
2PC and 3PC are unrealistic as N2 handshakes must
happen
EVS Engine
COReL

71

Relative Performance
http://www.cnds.jhu.edu/pub/papers/AT02_icdcs.pdf
http://www.cnds.jhu.edu/pub/papers/cnds-2002-4.pdf

72

Relative Performance
http://www.cnds.jhu.edu/pub/papers/AT02_icdcs.pdf
http://www.cnds.jhu.edu/pub/papers/cnds-2002-4.pdf

73

State of Affairs

Multi-Master replication is a long way off
current implementors use 2PC
no enterprise offerings achieve EVS Engine performance
architectures that push databases hard aren’t willing to cut
performance for replication
multi-master is ready for architectures with low update
rates that demand replication for data safety

Master-Slave is ready for prime time
MySQL (native master-slave replication)
Oracle snapshots/materialized views

74

Replicate the database on each web server
Oracle on each web server
replicate the needed tables
certainly doesn’t scale financially

If the site used MySQL...
zero capital investment
news items don’t need to be cached in PHP pages
legitimizes more intense queries in live site pages

News Site Revisited

75

The Right Tool For The Job

76

Who’s Online?
a real-world example

A “service” requires who’s online info

Users that have loaded an object within x
minutes

Need to know the last page the user hit

The “service” is exposed throughout the site

77

x = 30 (minutes)

5000 hits/second

100,000 concurrent users

Queries:
current users online (count)
current users on “this” page
sorted by last access (limit 30)

Scalability Requirements

78

We use MySQL to “drive” the site

We are familiar with MySQL

Queries are cake:

select count(1) from recent_hits
where hitdate > SUBDATE(NOW(), INTERVAL 30 MINUTE)

select username, hitdate from recent_hits
where url = ? and hitdate > SUBDATE(NOW(), INTERVAL 30 MINUTE)
order by hitdate desc
limit 30

Let’s use a familiar tool
We use MySQL anyway

79

100,000+ row table
assuming we sweep out stale data

5,000 replaces/second
indexes required on hitdate and url

1,000 queries/second
MySQL’s query cache doesn’t help at all, the updates
invalidate it

Replaces cannot block queries
MyISAM is not an option, we use InnoDB

Both queries require a full table scan!

Getting More Specific

All in addition to the existing demands of the site!

80

On the development box
(Idle dual Xeon, SCSI drives)

1,400 replaces/second
800 queries/second

On the production box
(dual Xeon, SCSI disk array w/ 1GB
cache)

200 replaces/second
150 queries/second

Try Some Tests

ARE YOU INSANE?!

81

We need which urls/users/timestamp tracking
So... we need to add an “update” to each page
No... that won’t catch images, let’s use a mod_perl log hook.
Wait... we are already writing logs, let’s aggregate passively
if we use mod_log_spread, we just need to add a subscriber

Passive aggregation
can handle “bursty” traffic by lagging behind a bit
it can’t slow down the app!

Pick a data structure
Multi-Indexed Skiplist -- why?

Free “balancing” -- randomized
O(lg n) insertion, deletion, location
O(1) popping (for culling expired sessions)
it precisely meets the requirements... and I like them.

Build a Custom Tool

82

Skiplist Index on:
username
url,hitdate
hitdate

Single thread, event driven
Receive messages from Spread:

parse username, url, hitdate
delete from skiplist by username O(lg n)
insert into skiplist O(lg n)
pop the end of the skiplist of any hitdate > 30 minutes O(1)

Receive client requests
Cardinality query is O(1), single write()
Users on a url query is O(lg), O(1) to fill out iovec, single writev()

Choose a Language
I like C... so sue me.

The concept:

83

6 hours worth of coding and testing

800 lines of C code (server)
use libspread and libskiplist

40 lines of perl (client module for web app)

On commodity hardware ($2k box)
~80,000 inserts/second

more hits than we’ll ever see!

~100,000,000 counts/second -- not including write()
~500,000 users for urls/second -- not including writev()

The Result

That’ll do.

84

MySQL is a great tool
it is used to drive the rest of the site...
spectacularly

Using it for this project would:
wasted valuable resources in the architecture
saved a few hours of work
allowed you to not use your brain

The Right Tool For The Job

85

Conclusion

This Image
Intentionally
Left Blank

86

Scalable Internet Architectures

Building them just isn’t that hard... if you

carefully analyze the problem at hand

don’t make sloppy or rash technical decisions

always think like a computer scientist

87

Thank You

OmniTI Computer Consulting, Inc.

My biggest fan club
Lisa, Zoe & Gianna

Look for my book in late 2005!

