
1
The Next Generation:
MySQL 5 + PHP 5

ApacheCon Europe 2005

July 19, 2005 :: Stuttgart

Georg Richter & Zak Greant
2 About Georg Richter

Author/maintainer of PHP's MySQL and ncurses extensions
Author of MySQL Connector/OO.org
ASF Member
MySQL AB Senior Developer

3 About Zak Greant
Co-maintainer of PHP’s MySQL extensions
Works with eZ systems as their Director, Free Software and Open Source
Author, PHP Functions Essential Reference

4 Questions ?
If something isn’t clear, just ask
... or wait for a break
... or wait for the end of the tutorial
... or send mail to apachecon@greant.com

5 How many of you use:
(in production)
PHP 4.x ?
PHP 5.0.x ?
PHP 5.1 ?

MySQL 3.23 ?
MySQL 4.0 ?

MySQL 4.1 ?
MySQL 5.0 ?
MaxDB ?

6 An Overview of ext/mysqli
... or, why make another MySQL API for PHP?

7 The PHP 5 MySQL API
Called ext/mysqli, with the 'i' standing for any one of: improved, interface, ingenious, incompatible or
incomplete (and hopefully not for: idiotic, impaired, etc.)
Supports all modern MySQL versions. (Older versions (< 4.1.x) do not support all features)
Needs version 4.1.3+ of the MySQL client library.
Written by Georg Richter.

8 Why was ext/mysqli created?
ext/mysql was difficult to extend (due to design flaws like: optional connections and arguments, many
deprecated functions, lots of nasty code to support all this)
New features in MySQL 4.1.+ could not be easily supported in ext/mysql
Better mapping between the ext/mysqli and the MySQL C API will make it easier to maintain this extension in
the future

9 Why use ext/mysqli: Safer
Safer connections with SSL and strong password hashing
Safer queries with prepared statements
No default connections or links make it harder to accidentally compromise or damage databases or the server.

10 Why use ext/mysqli: Faster
New MySQL binary protocol is more efficient
Prepared statements can give massive performance enhancements (1+ orders of magnitude) over large data
sets
Faster overall code

11 Why use ext/mysqli: Simpler
OO interface is simple, concise and extensible
Prepared statements make certain operations simpler
No persistent connections
Less to go wrong

12 Comparing new and old
The procedural interfaces are very similar, with the exception of some additional functions and the lack of
default links and connections.
For the most part, we will focus on the object-oriented interface. If you don't like OO, don't worry - you can
easily mix the OO interface into procedural code.
Note that code based on the OO interface is easier to extend

13 No Default Data Sources
Unlike the old extension, a default connection is never created or set. This prevents queries accidentally getting
sent to the wrong place if the php.ini file is modified.
Calling mysqli_query() without a valid connection to MySQL always fails, unlike mysql_query()
Calling mysqli_query() without specifying a link also fails, unlike mysql_query()

14 Procedural vs. OO
Connecting to a MySQL server

$link = mysqli_connect($h, $u, $p, $db);
$link = new mysqli($h, $u, $p, $db);

Sending a query
$result = mysqli_query($link,'SELECT 1');
$result = $link->query('SELECT 1');

Getting results
$row = mysqli_fetch_row($result);
$row = $result->fetch_row();

15 Using
ext/mysqli
More Fun.

16 Connecting to the server
Each parameter is optional.

$link = new mysqli($host, $user, $password, $db, $port, $socket);
17 Don't Use Defaults!

file::/etc/php.ini
mysqli.default_host = "staging"

mysqli.default_host = "live"

file::/../test.php
$link->query("DROP DATABASE foo");

code to recreate db for testing suite

great way to accidentally trash the production database
Hopefully, we can remove this "feature" in future versions of ext/mysqli

18 Making Queries
Just as you would expect

$result = $link->query('SELECT 1');
Optional last parameter allows use of buffered or unbuffered queries
Unbuffered queries provide more rapid access to the first elements of large data sets, but tie up the
connection.Buffered queries require more storage on the client side, and require all of a result to be transferred before it
can be used.

19 Fetching meta-data
Via functions, as in ext/mysql
By accessing a property of an object (faster)
Properties are fetched as required. Using var_dump() won't reveal them.

dump all connection properties
foreach(array('affected_rows', 'client_info', 'client_version', 'errno', 'error', 'field_count', 'host_info', 'info',
'insert_id', 'protocol_version', 'sqlstate', 'thread_id', 'warning_count') as $p){ echo $p,': ', $link->$p, "\n"; }

20 Fetching the insert id
$link->query('CREATE TEMPORARY TABLE foo (id int(11) NOT NULL auto_increment, bar text, PRIMARY KEY
(I))');
$link->query('INSERT foo (bar) VALUES (NOW());

echo "Insert ID: ", $link->insert_id,
 "\n";

Insert ID: 1
21 Prepared Statements I

A method of running queries that provides performance and security benefits.

Allows separation of query preparation (syntactic validation, parsing, query execution plan, ...) from query
execution (modifying a table or fetching a result set)
Works with CREATE TABLE, DELETE, DO, INSERT, REPLACE, SELECT, SET, UPDATE, and many SHOW statements

22 Prepared Statements II
Queries are split into two parts
... statements with optional placeholders

SELECT name, count FROM birds
SELECT name, count FROM birds WHERE station = ?

... and data corresponding to the placeholders
'ENSN' # Skien, Norway weather station

23 Prepare
The statement is sent to the server

$query = 'SELECT title, review, year FROM movie WHERE actor LIKE ?';
$stmt = $link->prepare($query);

The server syntactically validates, parses and (possibly) plans the query.
If the query is successfully prepared, the prepared statement is saved and a statement handle is returned.

24 Bind Parameters
Bind local variables to any placeholders

bind variable to prepared statement
$stmt->bind_param('s', $actor);

Parameters can be of the following types:
b: blob (send max_allowed_package chunks)
d: double/float
i: integer
s: string (includes enum, set and string representations of numbers, such as decimal)

25 Execute
Request that the server execute the query referenced by the link, passing any bound parameters with the
request.

$stmt->execute();
26 Bind Results

If the query returned rows of data, bind fields in the query to local variables.

$stmt->
bind_result(
 $title,
 $review,
 $year
);

27 Fetch Data
Then fetch a row from the result set. Each field is bound into the corresponding variable from the bind_result
call.

while($stmt->fetch()){
 printf("Actor: %s, Title: %s (%s)
Review: %0.1d/5\n",
 $actor, $title, $year, $review);
}

28 Simple Prepared SELECT
$link = new mysqli($h, $u, $p, 'information_schema');\

$query = 'SELECT TABLE_NAME FROM VIEWS';

$stmt = $link->prepare($query);
$stmt->execute();
$stmt->bind_result($name);

while($stmt->fetch()){
 echo $name, "\n";
}

29 Simple Prepared INSERT
$link = new mysqli($h, $u, $p, 'test');

$stmt = $link->prepare('INSERT movie (actor, review, title, year) VALUES (?, ?, ?, ?)');

$stmt->bind_param('sdsi', $actor, $review, $title, $year);
$actor = 'Audrey Tautou';
$review = 5;
$title = 'Amelie';
$year = 2001;
$stmt->execute();

30 Error Handling
Most functions return false on failure
For more info, use properties from mysqli or mysqli_stmt objects

$link->error()
$stmt->error()

... or a function-based idiom, like ext/mysqli
mysql_connect_error()
mysql_error()

31 Report Functions
Provides information to help debugging and development
Report instances where indexes are not used
Report errors in function calls (which usually need to be explicitly requested)

32 Basic Reporting Example
mysqli_report(MYSQLI_REPORT_ALL);
$link = new mysqli($h, $u, $p, 'world');

$result = $link->query('SELECT * FROM city WHERE name LIKE "%k%" LIMIT 10');

while($row = $result->fetch_row()){
 echo join(" ", $row), "\n";
}

PHP Warning: mysqli::query(): No index used in query/prepared statement SELECT * FROM city WHERE name
LIKE "%k%" LIMIT 10 in /Users/zag/Projects/Sessions/mysqluc05/prepared_2.php on line 4

33 Exceptions I
ext/mysqli has been recently extended to throw exceptions
This helps prevent standard ugly procedural error handling code:

$link = new mysqli(...);
if(FALSE === $link){ ... }

$result->query(...);
if(FALSE === $result){ ... }

etc.
34 Exceptions II

With exceptions, you get nice clean code like:
try {
 $my = new my_mysqli($h, $u, $p);
 $result = $my->query("SELECT NOW()");
 var_dump($result->fetch_row());
 $result->free();
 $my->close();
} catch (Exception $e){
 # error handling here
}

35 Exceptions III
Use specific catch blocks for specific errors. A generic catch block could also be used.

try {
 $my = new my_mysqli($h, $u, $p);
 $result = $my->query("SELECT NOW()");
 var_dump($result->fetch_row());
} catch(ConnectException $exception) {
 echo "Connection Error\n";
 var_dump($exception->getMessage());
} catch(QueryException $exception) {
 echo "Query Error\n";
 var_dump($exception->getMessage());
}

36 Extending ext/mysqli

Adding a new method.
class my_mysqli extends mysqli {
 function quick_fetch($query) {
 if(!$result = $this->query($query)){
 return FALSE;
 }
 return array_pop($this->query($query)->fetch_row());
 }
}
$my = new my_mysqli($, $u, $p);
echo $link->quick_fetch('SELECT NOW()');

37 Migrating is a Piece of Cake
The similarities of ext/mysql and ext/mysqli make migration simple
The major choices are choosing whether or not to use OO and prepared statements

38 Migrating is a Tough Cookie
Don’t trust new code for a production setting
The old MySQL extension has been in production use for years.
ext/mysqli hasn’t. There may be bugs or subtle change in behavior

39 Migration: Duplicate Environment
Duplicate all or part of your application environment (or create your desired app. environment)
Replicate data from your current MySQL install to a newer version of MySQL
Use rsync to sync file data
Write simple scripts to automate all the process - you will likely need several tries to get it right and doing it all
by hand gets boring

40 Migration: Live Data
Ensure that your duplicate environment can’t trash data on shared servers
Crank up the error reporting, logs, etc
Use socat or ipfilters to split traffic between your real environment and your test environment
Fix what you forgot to do
Try again

41 Migration: Followup
Compare the state of the MySQL databases at the end of a test run

Use mysqldump to dump data in a format that can easily be diffed
Comparing log files
Run test suites
etc.

42 Coffee Break?
43 A Quick Trip Through MySQL Feature Land
44 UNIREG

Ancient History
45 MySQL 3.x

Rest In Peace.
46 MySQL 4.0.x

Very Stable.
Mostly Harmless.
General Availability.

47 MySQL 4.1.x
General Availability.

48 MySQL 4.1 Major Features
Error and Warnings Reporting System, Improved Client/Server Protocol, Improved I18L, Integrated Help, Stored
Procedures, Subqueries

49 Errors and Warnings
Better reporting for warnings and errors
Use SHOW WARNINGS/ERRORS to view warning and error messages
Each query resets the warning/error message cache

50 Showing warnings and errors
display last 10 errors from prior query
SHOW ERRORS LIMIT 10;

display the total number of errors
SHOW COUNT(*) ERRORS;

fetch the total number of warnings

SELECT @@warning_count;

fetch max. # of error messages that will be stored for a single query
SELECT @@max_error_count;

51 Sample warning display
DROP TABLE IF EXISTS no_such_table;
SHOW WARNINGS\G

 Level: Note
 Code: 1051
Message: Unknown table 'no_such_table'

52 Improved Client/Server Protocol
Supports prepared statements
Allows blob/clob data to be sent in chunks to server without storing requiring client-side storage
Lower overhead - transmits data in its natural representation
Optional inline zlib compression
Optional SSL connections

53 Improved I18L
Much better support for character sets and collations
Can mix character sets, etc. inside of any data context in the server, from databases to tables to queries.
Supported in InnoDB, MEMORY and MyISAM storage engines
Includes UNICODE support

54 Collations
Rules for sorting character sets
One character set can have many collations. e.g. latin1 has latin1_bin, latin1_german1_ci, latin1_german2_ci,
etc.
A string has zero or one default collations.
Collations can only be used for the corresponding character set

using a collation with ORDER BY
SELECT * FROM names ORDER BY name COLLATE latin1_bin;

55 A Binary Collation (ASCII)
... WHERE 'A' < 'B'

Comparison returns true, as the encoding of ‘A’ (65) is less than the encoding of ‘B' (66)
... WHERE 'A' = 'a'

Comparison returns false, as the encoding of ‘A’ (65) is different than the encoding of ‘a' (97)
56 A Non-Binary Collation

Non-binary collations use transformative rules to alter the comparison
“ü” == “ue”
“A” == “a”
“A” == “eh” // latin1_canadian ;)

57 Examining a String
SET @str =
 CONVERT(_latin1'Foo!' USING utf8);

SELECT CHARSET(@str),
 CHAR_LENGTH(@chr_str),
 BIT_LENGTH(@chr_str),
 COLLATION(@chr_str)\G

Results
 CHARSET(@str): utf8
CHAR_LENGTH(@str): 3
 BIT_LENGTH(@str): 24
 COLLATION(@str): utf8_general_ci

58 Examining a Table
SHOW CREATE TABLE mysql.user\G

CREATE TABLE user (
 Host char(60) collate utf8_bin NOT NULL default '',
 User char(16) collate utf8_bin NOT NULL default '',
 Password char(41) collate utf8_bin NOT NULL default '',
 Select_priv enum('N','Y') character set utf8 NOT NULL default 'N',
 ...
) ... DEFAULT CHARSET=utf8 COLLATE=utf8_bin ...

59 Charset/Collation Info
Use SHOW CHARACTER SET to show the available character sets on a MySQL server
Use SHOW COLLATION to show the available collations on a MySQL server
Note that the collation names generally end in suffixes that indidicate if they are case-sensitive (_cs), case-
insensitive (_ci) or binary (_bin) collations

60 Integrated Help
Provides simple help on MySQL features and functions via queries.
Help data is stored in the mysql.help_% tables on the MySQL server.
Generated from the included manual using the fill_help_tables script
Very handy if dealing with an unfamiliar feature or version of MySQL

61 Using Integrated Help
HELP CONTENTS
HELP SELECT

Use SQL wildcards
HELP EL_
HELP DATA MAN%

62 Subqueries
Allow a query within another query to be treated as a table, list or scalar value
More powerful and easier to use than joins
Can be of correlated (where a table referenced in a subquery also appears in the outer query) or uncorrelated
forms (where this is not the case or is forbidden (as in derived tables))

63 Simple Subquery
MEMORY tables/total # of tables

SELECT (COUNT(*) FROM TABLES WHERE ENGINE = 'MEMORY'), (SELECT COUNT(*) FROM TABLES);
64 Subquery as Scalar

Subqueries can go most places that a scalar value can be used
Determine how many cities, from all of the cities listed in the world database are larger than the largest city in
Norway.

SELECT COUNT(*), (SELECT COUNT(*) FROM city) FROM city WHERE city.population >
(SELECT MAX(population) FROM city
WHERE countrycode = 'NOR');

65 Subqueries and Exists
Correlated subquery with exists

SELECT name, code FROM country
 WHERE NOT EXISTS
 (SELECT * FROM city
 WHERE countrycode = country.code);

66 MySQL 5.x
Still a beta release.

Don’t use it in production without a lot of testing.
67 MySQL 5.0 Major Features

Information Schema
Stored Procedures
Triggers
Views

68 Information Schema
A consistent, query-based method for retrieving meta-data about the server
Accessing meta-data becomes just another query, allowing much easier programmatic access of the meta-
data.
Provides access to meta-data on tables, columns, stored procedures, views, etc.

69 Stored Procedures
A collection of SQL statements stored on the server and callable by name
Greater independence from the client application
Better network performance vs. more server load
More secure - keeps operations on data on the server
Not yet stable - still limited

70 Stored Procedure Example

CREATE PROCEDURE withdraw(p_amt DECIMAL(6,2), p_tellerid INT, p_custid INT)
MODIFIES SQL DATA
BEGIN ATOMIC
 UPDATE customers
 SET balance=balance - p_amt;
 UPDATE tellers

 SET cashonhand=cashonhand - p_amt
 WHERE tellerid = p_tellerid;

 INSERT INTO transactions
 VALUES (p_custid, p_tellerid, p_amt);
END

71 Triggers
A chunk of SQL run when a data modification query is executed on a given table.
Can be set to run before or after DELETE, INSERT and UPDATE queries.
Created with syntax:

CREATE TRIGGER name BEFORE QUERY_TYPE ON table FOR EACH ROW statement(s);
Trigger support is still rudimentary.

72 Simple Sample Triggers
These just echo out a snippet of text on DELETE or INSERT.

CREATE TABLE test (i int NOT NULL, PRIMARY KEY (i));
CREATE TRIGGER show_insert BEFORE INSERT ON test FOR EACH ROW SELECT CONCAT('inserted ', NEW.i);
CREATE TRIGGER show_delete BEFORE DELETE ON test FOR EACH ROW SELECT CONCAT('deleted ', NEW.i);

73 Sample Trigger
Keep track of the number of updates to a column

CREATE TRIGGER count_changes BEFORE UPDATE ON address FOR EACH ROW SET NEW.count = IFNULL
(OLD.count, 1) + 1;

74 Views
A logical table (rather than physical) created from a query
Can be updated (but be careful)
Has its own permissions
Relies on the underlying table indexes for efficiency
Managed much like a normal table: CREATE VIEW, SHOW VIEW, ALTER VIEW, DROP VIEW

75 Creating and Using a View
CREATE VIEW scandinavia AS SELECT id, name, population, district, countrycode FROM city WHERE countrycode
in ('DNK', 'NOR', 'SWE');

SELECT name FROM scandinavia ORDER BY population DESC LIMIT 4;
+-----------------------+
| name |
+-----------------------+
| Stockholm |
| Oslo |
| København |
| Gothenburg [Göteborg] |
+-----------------------+

76 Creating a View of a View
CREATE VIEW norway AS SELECT id, name, population, district FROM scandinavia WHERE countrycode = 'NOR';

SELECT name, district FROM norway;
+-----------+---------------+
| name | district |
+-----------+---------------+
Oslo	Oslo
Bergen	Hordaland
Trondheim	Sør-Trøndelag
Stavanger	Rogaland
Bærum	Akershus
+-----------+---------------+

77 Inserting Into a View
Works much like expected

INSERT norway (name, population, district) VALUES ('Skien', 50507, 'Telemark');
Watch our for missing defaults!

SELECT Name, CountryCode as Country, Population as ‘Pop.’, District FROM city WHERE Name = 'Skien';
+-------+---------+----------+-------+
| Name | Country | District | Pop. |
+-------+---------+----------+-------+
| Skien | | Telemark | 50507 |
+-------+---------+----------+-------+

78 Creating Alternate Views of Data
CREATE VIEW privs AS SELECT host, user,
 (if(Select_priv = 'Y', 1 << 0, 0) |
 if(Insert_priv = 'Y', 1 << 1, 0) |
 if(Update_priv = 'Y', 1 << 2, 0) |
 if(Delete_priv = 'Y', 1 << 3, 0) |
 if(Create_priv = 'Y', 1 << 4, 0) |
 if(Drop_priv = 'Y', 1 << 5, 0) |
 if(Reload_priv = 'Y', 1 << 6, 0) |
 if(Shutdown_priv = 'Y', 1 << 7, 0) |
 ...
 if(Show_view_priv = 'Y', 1 << 22, 0))
AS privmap FROM mysql.user;

79 Using the Alternate View
mysql> SELECT * FROM privs;
+-------------+------+---------+
| host | user | privmap |
+-------------+------+---------+
localhost	root	8388607
towel.local	root	8388607
towel.local		0
localhost		0
+-------------+------+---------+
4 rows in set (0.00 sec)

80 Questions?

