

DEVELOPING WITH LAMP

ApacheCon Europe 2005

Daniel Lopez Ridruejo
daniel@bitrock.com

1. Introduction

The LAMP acronym was first coined by Michael Kunze in an article for the
German computing magazine c’t in 1998 (December Issue, page 230,) to give a
name to the set of open source software programs gaining popularity for use
together to run dynamic web pages and servers. As you may know, LAMP is an
acronym for Linux, Apache, MySQL and PHP (although Python or Perl is often
used in its place.) There are several similar platforms that substitute one or more
of the open source components of LAMP to serve the same purpose. Examples
of this include LAPP, which substitutes PostgreSQL for MySQL, and WAMP,
which substitutes Windows for Linux. Regardless of the exact combination of
freely available software used, these platforms provide a robust, open source
alternative to proprietary web application development environments, such as
Microsoft’s ASP.NET. Of course, for this tutorial, we will focus on the “standard”
LAMP components: Linux, Apache, MySQL, and PHP.

Apache

Back in the early 1990’s, the NCSA Web server software was extremely popular.
Because many of the original developers of the server left their work to join
Netscape, development slowed and eventually halted. The NCSA server was
open source, and users of the software started exchanging software patches to
fix bugs and improve the functionality of the Web server. Ten years ago last
February, they got together and created The Apache Group, a group of
developers working on “a patchy server,” hence the name. It has since become
the most popular web server on the Internet with over 47 million websites running
Apache, which represents a 69.6% market share, according to Netcraft’s July
2005 survey. Apache now powers many of the busiest Web sites in the world,
such as Amazon.com and itunes.com (more notable examples are included
below in the discussion of LAMP as a whole.) Obviously, these Web sites have
strict requirements for uptime and scalability, and Apache is able to live up to
their high standards.

In 1999, The Apache Group incorporated as the Apache Software Foundation
(ASF), a
not-for-profit corporation. From the Apache Web site:

The Apache Software Foundation will provide organizational, legal,
and financial support for the Apache open-source software projects.
The Foundation ensures the continuity of Apache projects beyond the
participation of individual volunteers, enables contributions of
intellectual property and financial support on a sound basis, and provides
a vehicle for limiting legal exposure while participating in open-source
projects.

The Apache Software Foundation provides a common umbrella for a variety of
Apache
and Web-related technologies.

The Apache license allows for both commercial and noncommercial distribution,
modification, and usage. The code is developed by a large, distributed group of
talented developers. The open source nature of Apache allows for many other
advantages, such as improved stability, security, and customization. Because
Apache code is available, and Apache is used widely, the server has been
continuously improved and tuned over the years. Apache 2.0 can be configured
as a threaded server, a process-based server, or a mixture of the two. This
allows the administrator to balance the performance and stability needs in a
particular setup. Process-based servers are stable but do not scale as well as
threaded servers. Well-designed threaded servers can be faster but less stable if
a thread misbehaves.

The open source nature of Apache makes it possible for an attacker to analyze
the code, searching for possible vulnerabilities or denial-of-services attacks.
Fortunately, it also allows developers to do the same. Changes to the source
code are watched for insecurities and are subject to extensive peer review. This
encourages high coding standards, and security issues are detected before they
go into the code and become problems. No serious remote vulnerabilities have
been discovered in Apache for years. When problems arise in Apache or one of
its modules, fixes are available within hours or days.

Apache is extremely flexible in terms of operating systems, extensibility, and
development languages. It runs on nearly every flavor of Unix and Windows, and
other operating systems such as OS/390 and BeOS. This allows enterprises and
service providers to standardize on a common Web serving platform across a
heterogeneous collection of machines, operating systems, and application
servers. It also has a powerful modular API that allows the server to be extended
in a variety of ways. Apache 2.0 allows developers to create their own protocol
handlers (like FTP or POP3), thus allowing Apache to become a general server
framework. Other modules offer template frameworks, authentication, XML
processing, and interfaces to enterprise data sources such as directories and
relational databases. Apache works with a variety of development languages,
including C, C++, Perl, Python, PHP, Tcl, and Java. It provides a shared,
common framework between the languages.

Administrative costs are an important part of any software solution. The scarcer
certain knowledge and skill sets are, the more expensive it is to hire people with
that expertise.
The popularity of Apache means that many Web masters and system
administrators are familiar with it. In addition, Apache is commonly used in
university projects and research because source code is available. This makes it
easy to hire experienced developers and administrators familiar with Apache.

MySQL

MySQL is the most popular open source database available, with over 6 million
active installations. Recent polls indicate that MySQL is the third most popular
database in use today. MySQL is used throughout the world by Fortune 100
companies, governments, and small businesses alike. Examples of MySQL
deployments include Sabre Holdings, Nokia, Lucent, T-Systems, Hewlett
Packard, the Associated Press, the French Ministry of Defense, and CNET
Networks.

The open source nature of MySQL’s code provides for several benefits. In fact, a
December 2003 study conducted by Reasoning found that the code quality of
MySQL was six times better than that of comparable proprietary code. As with
Apache, PHP, and other open source applications, this is because a huge
community of developers tests the software across a range of platforms before it
is certified for production. Bugs are found and fixed quickly. Access to source
code ensures a thorough understanding of the system. Developers can also
make modifications or performance enhancements as necessary.

PHP

Ten years ago, Rasmus Lerdorf started development on Personal Home Page
Tools. His goal was to provide a better tool for embedding dynamic content into
HTML pages. Now known as PHP, it is considered by many to be the ideal tool
for web development. Much of the server side scripting language’s syntax is
based on C, Java, and Perl, which allows people without a strong programming
background to quickly learn the language. Another considerable advantage of
PHP is its flexibility. Being open source and cross-platform provides for a great
deal of freedom for developers, who can easily port code between operating
systems, databases and Web servers. PHP will run in most flavors of Unix and
Windows, as well as Mac OS X, OS/2 and others. It also supports Open
Database Connectivity (ODBC) and therefore offers connectivity to a wide range
of common databases, including MySQL, PostgreSQL, Sybase, MySQL, and
Microsoft SQL Server. PHP will also easily integrate with web servers aside from
Apache, including Microsoft’s IIS, Netscape, and less popular servers like thttpd
and AOLserver.This allows you to standardize on a common development
language across a heterogeneous environment of systems and servers. You can
build a solution with PHP on a specific platform/server/database combination,
and then migrate to a different combination gradually, replacing one component
at a time. You can develop your code on a Windows workstation running IIS and
deploy it on a Unix server running Apache with few or no changes.

As of July 2005, 21,466,638 servers connected to the Internet were using PHP,
which represents about 30% of the total (according to Netcraft.) With it’s

popularity, it is not surprising that PHP has a large and very active community
supporting it. They have created a large number external libraries and code
samples so that you can quickly put together advanced application that do
everything from generating Flash and PDF documents to parsing XML.

The LAMP Platform

LAMP has become one of the platform of choice for both casual and high-
performance web development. Three out of the top four most reliable company
hosting sites for the month of June were using Linux and Apache, and two of
those were using PHP as well (the third did not specify a language.) Notable
examples of LAMP deployments include: NASA, Wikipedia, the US Census
Bureau, and Hoovers.

Now that we have established that LAMP is an extremely popular platform for
web development, let’s take a look at why that is the case. All of the components
share some important characteristics: they are open source, work across multiple
platforms, and they can be used free of charge (as long as the licenses are
complied with.)

Open Source

I have mentioned some of the primary benefits of open source software
throughout this introduction. Because it is one of the key reasons for its success,
we will quickly review these important advantages in relation to the LAMP
platform:

��Access to the Code: Having access to the code allows anyone to make
improvements and modifications as they see fit. This creates a wide
knowledge, developer and user-base, which in turn improves the
performance, security, and general quality of the code.

��Lower Cost of Ownership: Aside from being available without license fees,

a huge amount of information for administering and trouble-shooting open
source is available on the Internet. Also, the large number of open source
developers means that the cost of finding an hiring someone with
expertise is much lower than with highly-specialized, proprietary solutions.

��Freedom from Vendor Lock-In: Apache, MySQL, and PHP will all run

across multiple platforms. This means that code can be ported between
hardware and operating systems with minimal changes. They will all also
integrate with a wide range of both open source and proprietary software
and tools. This freedom makes them all extremely attractive to proprietary
solutions.

Additional Advantages

In addition to the advantages of being open source, PHP and MySQL are
relatively easy to learn and use, so people without previous programming
experience can quickly be “up and running” with both. The pluggable
architectures of PHP and Apache make it possible for people to write plug-ins
and modules to allow users to add additional functionality the server. This
creates an ecosystem of modules, which makes the platform much more
attractive (chances are that someone has already developed a plug-in for the
feature you require.) These significant advantages clearly explain why LAMP has
become the “standard” for web deployment.

About This Tutorial

This tutorial will provide a basic introduction to LAMP, along with covering how to
build, configure, and administer a LAMP environment. I will also take you through
creating a basic application, as well as discussing some cool modules that can
enhance LAMP. In essence, the tutorial will be an overview and a basic “how-to”
for LAMP. In the interest of working within the scope and time constraints of the
session, this tutorial will not serve as a comprehensive, in-depth review of LAMP
or any of the components.

2. Installing and customizing Apache

The first step toward setting your LAMP environment is to download, compile,
and install a basic Apache server on Linux. This section also covers binary
installations.

Choosing the Appropriate Installation Method

Several options are available to get a basic Apache installation in place. Apache
is open source, meaning that you can have access to the full source code of the
software, which in turn enables you to build your own custom server.

Additionally, pre-built Apache binary distributions are available for most modern
Unix platforms. Finally, Apache comes already bundled with a variety of Linux
distributions, and commercial versions can be purchased from software vendors.

Building from Source

Building from source gives you the greatest flexibility, enabling you to build a
custom server, remove modules you do not need, and extend the server with
third-party modules. Building Apache from source code enables you to easily
upgrade to the latest versions and quickly apply security patches. Updated
versions from vendors usually take days or weeks to appear.

Building Apache from the source code is not that difficult for simple installations,
but can grow in complexity when third-party modules and libraries are involved.

Installing a Binary

Unix binary installations are available from vendors and can also be downloaded
from the Apache Software Foundation Web site. They provide a convenient way
to install Apache for first-time users.

Third-party commercial vendors provide prepackaged Apache installations
together with an application server, additional modules, support, and so on.

Installing Apache on Unix

This section explains how to install Apache on Unix and Unix-like systems such
as Linux.

Checking Whether Apache Is Already Installed in Your System

If you are running a modern Linux distribution, chances are that Apache is
already installed in your system. Try the following at the command-line prompt:

httpd -v

Because some distributions name the Apache binary httpd2, you can also try the
following:

httpd2 -v

If Apache is installed and the binary is in your path, you will get a message with
the version and build time:

Server version: Apache/2.0.28
Server built: Dec 29 2001 10:32:01

Otherwise, you will get command not found or a similar message. It might be that
Apache is already installed but is in a different path or with a different binary
name, such as httpd2. Check whether /usr/local/apache2/ or /etc/httpd2
exists and contains a valid Apache 2.0 installation.

An existing 1.3 Apache installation is likely to interfere with your new Apache if
the older installation runs at startup, so make sure that either the package is
removed from the operating system or the startup script, if any, is disabled. For
example, in most Linux distributions, this means modifying the startup scripts at
/etc/rc.d/.

Installing from Source

The steps necessary to successfully install Apache from source are:

1. Downloading the software
2. Running the configuration script
3. Compiling the code and installing it

These steps are described now in detail.

Downloading the Apache Source Code

The official Apache download site is located at

http://www.apache.org/dist/httpd

You can find several Apache versions, packaged with different compression
methods. The distribution files are first packed with the Unix tar utility and then
compressed either with the gzip tool or the compress utility. Download the
.tar.gz version if you have the gunzip utility installed in your system. This tool
comes installed by default in most Linux distributions.

The file you want to download will be named something similar to httpd-
2.0.54.tar.gz if you are going to use Apache 2.0 or something similar to
apache_1.3.33.tar.gz if you are going to use Apache 1.3. The rest of this
document assumes you use Apache 2.0

Uncompressing the Source Code

You can uncompress the file you just downloaded using the gunzip utility (part of
the gzip distribution).

You can uncompress and unpack the software by typing the following command:

gunzip < httpd-2.0.54.tar.gz | tar xvf -

Uncompressing the file creates a structure of directories, with the top-level
directory named httpd-2.0.54. Change your current directory to the top-level
directory.

Configuring the Software

You can specify which features the resulting binary will have by using the
configure script, in the top-level distribution directory. By default, Apache will be
compiled with a set of standard modules compiled statically and will be installed
in the /usr/local/apache2 directory. If you are happy with these settings, you
can issue the following command to configure Apache:

./configure

However, if you want to be able to extend the server later with third-party
modules, such as PHP, you should compile Apache with loadable module
support. This, combined with the Apache extension utility (apxs), will enable you
to extend the server later with third-party modules without the need to recompile.

To configure Apache this way, issue the following command:

#./configure --enable-so --enable-mods-shared=most

If you are installing Apache as a normal user and you don’t have write
permissions on /usr/local/, or you simply want to install Apache on a different
location, you can specify an alternative location using the --prefix option. For
example, the following line:

#./configure --enable-so --enable-mods-shared=most
-- prefix=/home/username/apache2

will compile Apache to be installed in the home directory of the username user.

The purpose of the configure script is to figure out everything related to finding
libraries, compile time options, platform-specific differences, and so on, and to
create a set of special files called makefiles.

Makefiles contain instructions to perform different tasks, called targets, such as
building Apache. These files will then be read by the Unix make utility, which will
carry on those tasks. If everything goes well, after executing configure, you will
see a set of messages related to the different checks just performed and you will
be ready to compile the software.

Compiling and Installing Apache

The make utility reads the information stored in the makefiles and builds the
server and modules. Type make at the command line to build Apache.

#./make

You will see several messages indicating the compilation progress. After
compilation is finished, you can install Apache by typing make install.

#./make install

The Apache distribution files will be copied to /usr/local/apache2 or the target
directory specified with the --prefix switch.

Apache Compilation Options

The Apache configuration script, configure, can take additional options. Many of
them are irrelevant for most users, either because they are rarely used or they
relate to building Apache distribution packages. A number of them deal with
enabling or disabling specific Modules. Below you will find a description of the
most useful configuration options. You can get a complete listing by issuing the
./configure --help command.

Configuration Options

--with-mpm=mpm Specifies the Apache Multi-Processing Module. If this option is
not specified, the default MPM for the platform will be compiled in. In Unix, the
value for mpm can be either worker, perchild, or prefork.

--enable-so Enables loadable module support.

--prefix=path Apache will be installed relative to the value of the path directory.
By default, Apache will be installed in /usr/local/apache2.

--enable-module Enables or disables the specified module.

--disable-module Complete module listing and descriptions.

--enable-modules=list Another way of specifying which modules to build, either

--enable-mods-shared=list Compiled into the server or as shared libraries. Both
switches can take either a list of modules, all (all modules bundled with Apache),
or most (includes the majority of the modules you will need).

Selecting the Appropriate MPM

MPMs are available only in Apache 2.0. There are two main MPMs: prefork that
will be used by default, and worker. We will use prefork because a threaded
server such as worker causes problems with non-thread-safe PHP extensions

Installing Binaries

This section explains how to install a pre-built Apache server on Unix platforms.

Binaries from the Apache Web Site

You can download binaries for different platforms from the Apache Web site at
http://www.apache.org/dist/httpd/binaries. Check whether binaries for your
platform are available. You can download and uncompress the tarball as
described in the previous section. In this case, the configuration and compilation
steps are not necessary. You can install the software by executing the install-
bindist script. You can pass an optional argument, the target installation
directory. Otherwise, the software will be installed in /usr/local/apache2.

Directory Structure

The four more relevant directories of an Apache default installation are the conf/
directory, the bin/ directory, the htdocs/ directory and the logs/ directory.

Configuration Files

Apache is configured using directives. Apache keeps its configuration in text files.
The main file is called httpd.conf. Additionally you can use other configuration files
using the Include directive. Changes to the configuration files do not take effect
until you restart the server.

Htdocs Directory

The directory htdocs of the Apache default installation contains the documents
that will be accessible through the Web site. This directory is also called the

document root. If you already have a web page and you want to serve its content
with Apache, you can do so simply by copying your files to the this directory.

Apache Binary and Support Scripts

Under bin/ You will find the Apache program executable called, httpd, as well as
additional support scripts to easily start and stop the server, manipulate
password files, and perform benchmarking and log file processing in the bin
directory of the Apache default installation.

Starting Apache

Although you can start Apache by invoking the httpd binary final, it’s
recommended to used the apachectl control script. The difference is that this
script sets certain environment variables and then invokes the httpd binary file.
After being invoked, the first thing that httpd does is to locate and read the
configuration file httpd.conf. You can start Apache from the command line by
issuing:

/usr/local/apache2/bin/apachectl start

If no error is found, you will see a message similar to:

/usr/local/apache2/bin/apachectl start: httpd started

Testing your installation

This indicates the server is up and running. You can test so by opening a
browser and accessing the following URL http://127.0.0.1/, which will take you
to the test page. You may need to use http://127.0.0.1:8080/ if you are
installing as a regular user and using an unprivileged port.

Stopping Apache

You can stop Apache from the command line issuing:

/usr/local/apache2/bin/apachectl stop

After a moment you should see a message similar to:

/usr/local/apache2/bin/apachectl stop: httpd stopped

Basic Apache Configuration

Once Apache starts, it will create two log files, the access_log and the error_log.
You can find both files at the logs directory of the Apache default installation.

The access_log file is used to track client requests. When a client requests a
document from the server, Apache records several parameters associated with
the request in this file, such as: the IP address of the client, the document
requested, the HTTP status code, and the current time. You can change the
name and location of the access_log editing the httpd.conf file and modifying
the value specified in the CustomLog directive.

The error_log file is used to record important events. This file includes error
messages, startup messages, and any other significant events in the life cycle of
the server. This is the first place to look when you run into a problem when using
Apache. You can change the name and location of the error_log editing the
httpd.conf file and modifying the value specified in the ErrorLog directive.

With the default configuration, Apache will wait for requests in the port 80. You
can change that by editing the httpd.conf file and modifiying the value specified
in the Listen directive.

The ServerName directive sets the hostname and port that the server uses to
identify itself. This is used when creating redirection URLs. The ServerName
directive accepts a fully qualified domain name and an optional port. If the port is
not specified, it is assumed to be the port from the incoming request. For
example, you can use:

ServerName www.example.com:80

If no ServerName is specified, then the server attempts to deduce the hostname by
performing a reverse lookup on the IP address of the TCP connection. If no port
is specified in the ServerName, then the server will use the port from the incoming
request. For optimal reliability and predictability, you should specify an explicit
hostname and port using the ServerName directive.

You can find more information about Apache in the technical documentation that
is located in the /usr/local/apache2/htdocs/manual directory.

3. Installing and customizing PHP

Installing on Unix

This section explains you how to install PHP 4 on Unix as an Apache 2 module.

Binary Installation

Most Linux and Unix distributions that come preinstalled with Apache already
include a PHP module. Use your package manager to find out whether the PHP
package is already installed in your system; otherwise, download and install it.
You can also check your distribution Web site and download the package from
there.

Source Code Installation

This section explains how to download, build, and install the PHP module.

Getting PHP

The PHP source code can be downloaded from the main PHP Web site at
http://www.php.net. The file you need is called php-4.3.11.tar.gz. After you
have downloaded the tarball, uncompress it and change to the newly created
directory:

gunzip < php-4.3.11.tar.gz | tar xvf -
cd php-4.3.11

The PHP directory structure contains the following important directories, as
shown in

TSRM/ The Thread Safe Resource Manager.
Zend/ The code for the Zend scripting engine.
build/ The build-related scripts and Makefiles.
ext/ The extensions bundled with PHP for database access, XML manipulation,
and so on. Each of the subdirectories contains a Makefile, and most of them
have a README file that explains the purpose of the extension.
libs/ The directory where the PHP Apache module shared library will be placed
when it is built.
main/ The core of the PHP code.
modules/ The directory where additional modules shared libraries will be placed.
pear/ The PEAR (PHP Extension and Application Repository) contains a
collection of reusable library code similar to Perl’s CPAN (http://www.cpan.org).
regex/ The regular expression library code.

sapi/ The server extension abstraction layer. Here you can find modules to
interface PHP to Microsoft IIS, Netscape, and, of course, Apache.
scripts/ The miscellaneous scripts used by PHP developers.
rests/ The test suite.

Compiling PHP

PHP, like many other open source projects, uses autoconf and automake tools to
ease portability. The build scripts are able to find out by themselves most of the
information they need to compile PHP, but you must pass certain parameters
explicitly. PHP will be built as a loadable module, with the help of the Apache
apxs tool.

The rest of this section assumes that you have installed Apache 2.0 in
/usr/local/apache2 and that you have root privileges. Apache must have been
compiled with loadable module support enabled (--enable-so option). PHP will
be installed under /usr/local/php4. If you want to build Apache and PHP as a
regular user, you must change the paths provided later to paths that you have
write permissions to. Type the following in the directory created when you
uncompressed the PHP 4 sources:

./configure --with-apxs2=/usr/local/apache2/bin/apxs --with-mysql --
prefix=/usr/local/php4

You will see a rapid succession of messages while the configure script checks for
the libraries it needs in your system and creates the Makefiles necessary for the
build system. If everything goes well and the configure script finishes without
throwing any errors, you can type the following to build PHP:

make

After the build finishes, you will have a libphp4.so file in the libs/ directory.
To install the files, type

make install

This will perform the following tasks:
• Installs the shared library libphp4.so into the /usr/local/apache2/modules
directory
• Adds a LoadModule directive into /usr/local/apache2/conf/httpd.conf
• Installs PHP header files, binaries, and the PEAR libraries into /usr/local/php4

Finally you will have to edit your /usr/local/apache2/conf/httpd.conf and add
the following line:

AddType application/x-httpd-php .php

Testing Your PHP Installation

To test whether PHP is working correctly, create a file called example.php in the
/usr/local/apache2/htdocs directory with the following contents:

<?php phpinfo(); ?>

Restart Apache and access the URL http://127.0.0.1/example.php. If PHP was
installed correctly, you should see a something similar to this:

The Apache error file /usr/local/apache2/logs/error_log is the first place to
look if you get an error or empty page. It will provide you with valuable
information about what might have gone wrong. By far the most common issue is
permissions: Make sure that the file example.php is readable by the user which
Apache is running as.

Also make sure that Apache was built with loadable module support. You can
check that by issuing the following command:

/usr/local/apache2/bin/httpd -l

and looking for mod_so.c in the output. Make sure that PHP is being loaded by
checking for the appropriate LoadModule directive in httpd.conf.

In this section you learned how to build PHP as an Apache module and how to
configure it to work with your Apache server. That was a basic installation. The
PHP configure command allows many more flags to be passed to enable
different language features and extensions. You can get a complete list of the
options by typing:

./configure --help | more

The most important ones are:

General Options

The following are general options that you can pass to the configure script.

--prefix=/some/path

Allows you to specify the path where PHP will be installed.

--with-apxs2=/path/to/apache2/bin/apxs

Builds shared Apache 2.0 module using the specified apxs utility.

--enable-debug

Enables debug symbols; useful for troubleshooting.

--without-pear

Does not install PEAR.

--enable-safe-mode

Enables the restricted safe mode by default. If you use this option, you will also
be interested in --with-exec-dir, which specifies the executables allowed in
safe mode.

--with-openssl

Includes OpenSSL support. OpenSSL is a library that provides SSL support

--with-curl

Includes curl support. Libcurl is a library that provides client-side support for a
variety of protocols, including HTTP/HTTPS, FTP, Telnet, and more. You can
learn more about curl at http://curl.sourceforge.net/.

--enable-ftp

Enables FTP support.

Graphics Support

The following commands are options that you can pass to the configure script to
configure PHP graphics-related libraries.

--with-gd=/path/to/gd/install/dir

GD is a library that allows programmatic image creation and manipulation. It is
useful for generating on-the-fly images and logos. You can learn more about GD
at http://www.boutell.com/gd/. The previous command line will build GD as
part of PHP. If you want to create a shared library, you must pass the command
line as

--with-gd=shared,/path/to/gd/install/dir

GD depends on additional libraries to support certain graphic formats. Associated
configure options are

--with-jpeg-dir=/path/to/jpeg/install/dir

For libjpeg support.

--with-png-dir=/path/to/libpng/install/dir

For libpng support.

--with-xpm-dir=/path/to/libxpm/install/dir

For libXpm support.

--with-t1lib=/path/to/t1lib/install/dir

For t1lib, Adobe Type 1 fonts support.

GD allows the use of TTF (TrueType Fonts) to add text to images:

--enable-gd-native-ttf

Enables TrueType string function in GD.

--with-freetype-dir=/path/to/freetype2/install/dir

FreeType 2 support.

--with-ttf=/path/to/freetype/install/dir

Includes FreeType 1.x support.

An additional PHP module provides improved graphic manipulation using the
imlib graphics library. You can find more information at
http://mmcc.cx/php_imlib/.

Flash Animation

PHP provides Shockwave Flash support via two libraries: SWF and Ming. To
install the SWF library:

--with-swf=/path/to/swf/install/dir

The SWF library can be found at http://reality.sgi.com/grafica/flash/.

To install the Ming library:

--with-ming=/path/to/ming/install/dir

The Ming library provides support for Flash generation and includes a PHP
binding. It can be found at http://opaque.net/ming.

PDF Generation

PHP supports on-the-fly generation of PDF documents using the clibpdf and
pdflib libraries:

--with-pdflib=/path/to/pdflib/install/dir

PDF support via the pdflib library requires a license for commercial usage. You
can learn more about pdflib at http://www.pdflib.com/pdflib/index.html.

--with-cpdf=/path/to/clibpdf/install/dir

PDF generation support via the clibpdf library. You can learn more at
http://www.fastio.com/.

Database Support

PHP supports a variety of database backends.

--with-mysql=/path/to/mysql/dir

Support for the MySQL (http://www.mysql.com) database. If the path is not
specified, PHP includes built-in support and will use it instead.

--with-pgsql=/path/to/pgsql/dir

Support for the PostgreSQL database (http://www.posgresql.org).

XML Support

The following are options that you can pass to the configure script to configure
PHP’s XML-related libraries.

--with-dom=/path/to/libxml/install/dir

Includes DOM support via the libxml library, a C-based XML processing library
distributed under the LGPL and the W3C IPR licenses. You can learn more about
libxml at http://xmlsoft.org/.

--disable-xml

Disables built-in expat XML support (it is on by default).

--enable-xslt

Enables XSLT support.

--with-sablot=/path/to/sablotron/install/dir

Provides support for the Sablotron XSLT transformation engine. You can learn
more about Sablotron at http://www.gingerall.com/.

--with-expat-dir=/path/to/expat/install/dir

Expat library required by Sablotron. You can find expat at
http://www.jclark.com/xml/expat.html.

--with-qtdom

XML DOM support via the qt library that can be found at
http://www.trolltech.com/products/qt/.

--enable-wddx

Enables wddx support, which is used when programming Web services.

Session Support

The following are options that you can pass to the configure script to configure
PHP session support. This enables PHP scripts to keep track of user data
between requests.

--enable-trans-id

Enables transparent ID propagation of session information (this can be done via
cookies).

--with-mm

Enables shared memory support for session storage via the mm library. You can
learn more about the mm library at http://www.engelschall.com/sw/mm/.
This section presented you with several configuration options to give you an idea
of the capabilities of PHP. There are many more that provide support for
additional databases, SNMP, CORBA, calendar functions, IMAP, Unicode, Java,
LDAP, encryption, and more. You can get a comprehensive description of
supported language features at http://www.php.net/manual/en/.

You can find additional extensions and PHP Web applications in Freshmeat at
http://freshmeat.net and in the SourceForge PHP foundry at
http://sourceforge.net/foundry/php-foundry/. For example, the Vagrant
charting extension http://vagrant.sourceforge.net provides support for
programmatic generation of graphic charts.

Examples of Web applications based on PHP are Phorum (http://phorum.org/)
for Web discussion boards and IMP (http://www.horde.org/imp/) for Web mail.
Nuke (http://phpnuke.org/) and Midgard (http://www.midgard-project.org/)
are content management/Web portal systems.

PHP Configuration

PHP can be configured either via the php.ini file located in
/usr/local/php4/lib/ or from inside the Apache configuration file. You can
copy the file php.ini-dist from the build directory to
/usr/local/php4/lib/php.ini. The php.ini consists of key/value pairs. The
same settings can be specified in the Apache configuration file with the use of
these directives:

php_value name value

Sets the value of the name variable to value.

php_flag name on|off

Sets a Boolean configuration option.

There are certain options, called admin options, that must be specified in the
main Apache configuration file. They can be set using php_admin_value and
php_admin_flag. These options are usually security related, such as
open_basedir or safe_mode_exec_dir.

Some of the configuration options are relevant to PHP and others are for
configuring specific PHP modules. The following is a selection of the available
configuration options.

PHP Language

You can modify the way PHP can be mixed with HTML tags with the following
options.

short_open_tag boolean

To include PHP code, you usually need to surround it with <?php or <script>
tags. The short_open_tag directive enables you to use <? ?> tags in your code,
although PEAR coding practices encourage you to use the <?php format.

asp_tags boolean Allows use of ASP-style tags <% %> and constructs
(<%=$varname %> to include the value of a variable.

memory_limit integer
max_execution_time integer

These two directives set the maximum amount of memory in bytes that a script is
allowed to allocate, and the maximum time in seconds that a script is allowed to
run before the script is terminated by the PHP engine, respectively. This helps to
protect server resources from poorly written scripts.

include_path string

Specifies a list of directories where certain PHP functions (for including other files
and so on) look for files.

Error Manipulation

display_errors boolean

Determines whether errors should be printed to the screen as part of the HTML
output.

error_log string

Specifies the name of the file to which script errors should be logged. If the
special value syslog is used, the errors are sent to the Unix system logger
instead.

Output Manipulation

Apache transmits to the network the content created by the PHP script as it is
being generated. You might want to add specific headers to a response, but are
unable to do so because you have already sent part of the content. If you enable
output buffering, PHP will cache the page, enabling you to set headers at any
point on the page. PHP also provides hooks so that the content generated can
be filtered or changed. As an example, PHP supports compression of the output
of a script if the browser can understand compressed content, thus minimizing
download time. PHP also provides the ability to append or prepend headers or
footers to all generated pages, thus easing the task of creating a consistent,
sitewide look and feel.

auto_append_file string
auto_prepend_file string

PHP makes it possible to append or prepend files to every page served. These
files are parsed and interpreted as PHP scripts. If the name of the file is none,
auto-prepending or appending is disabled.

output_buffering boolean

Enables or disables output buffering.

output_handler handler

Allows the specification of an output handler, such as ob_gzhandler for
compression.

Security

It is possible to configure PHP to enhance the security of the installation,
especially in environments with multiple or not fully trusted users. PHP allows a
safe mode operation, which restricts the PHP/system functionality that the scripts
can access, such as limiting access to only certain files or directories. It is
possible to configure PHP to run as a CGI. This has advantages and risks from a
security standpoint, such as the ability to use the Apache suexec wrapper. Many
of the security issues need to be handled or complemented at the PHP level with
safe coding practices. You can learn more at
http://www.php.net/manual/en/security.php.

safe_mode boolean

Specifies whether to enable PHP’s safe mode.

safe_mode_exec_dir string

Specifies that system calls executing external programs will work only with
binaries in this directory.

open_basedir string

If present, this directive limits the files that can be opened by PHP to the ones
contained under the specified directory path.

Dynamic Extension Support

You can either compile PHP extensions into the PHP executable, or you can
choose to compile the extensions themselves as shared objects and load them
from within the PHP engine.

enable_dl boolean

Enabled by default, this directive restricts the ability to load shared library code
into PHP. The main reason to disable dynamic loading is security. Dynamic
loading is not available when using PHP in safe mode.

extension_dir string

Specifies the directory in which PHP should look for dynamically loadable
extensions.

extension string

Specifies which dynamically loadable extensions to load when PHP starts.

PHP Basics

This section gives you a quick overview of PHP basic syntax, so you get a feel
for the language. The actual programming and operation is explained later in the
tutorial.

As well as in MySQL, all PHP statements must finish with a semicolon, also
known as the instruction terminator.

Comments can be specified in a variety of ways, such as /* */ and //

Variables: A variable in PHP consists of a name of your election, preceded by a
dollar sign. Variable names can include letters, numbers and the underscore

character, must begin with a letter or an underscore, but cannot include spaces.
You can assign a value to a variable using the following syntax:

$var_name = value;

In PHP there are three types of variables: local to a function or script, global
within a function or script and superglobals.

Data Types: In PHP there are eight data types.

��Integer: A whole number
��Double: A floating-point number
��String: A collection of characters
��Boolean: One of the special values true or false
��Object: An instance of a class
��Array: An ordered set of keys and values
��Resource: Reference to a third-party resource
��NULL: An uninitialized variable

Constants: PHP allows you to create constants using the built-in define()
function. The basic syntax is:

define("CONSTANT_NAME", value);

The value you want to set can be a number, a string, or a boolean. By convention
the name of the constant should be in capital letters. Constants are accessed
with the constant name only; no dollar symbol is required.

Flow control functions syntax

IF

if (expression) {
 // code to execute if the expression evaluates to true
} else {
 // code to execute in all other cases
}

elseif

if (expression) {
 // code to execute if the expression evaluates to true
} elseif (another expression) {
 // code to execute if the previous expression failed
 // and this one evaluates to true
} else {
 // code to execute in all other cases
}

Switch

switch (expression) {
 case result1:
 // execute this if expression results in result1
 break;
 case result2:
 // execute this if expression results in result2
 break;
 default:
 // execute this if no break statement
 // has been encountered hitherto
}

Basic loop syntax

The while Statement

while (expression) {
 // do something
}

The do...while Statement

do {
 // code to be executed
} while (expression);

The for Statement

for (initialization expression; test expression; modification
expression) {
 // code to be executed
}

Functions

You can define a function using the function statement:

function some_function($argument1, $argument2) {
 // function code here
}

Calling a function:

Function_name($arg1, $arg2);

You can return values from functions using a return statement.

4. Installing MySQL

How to download and install MySQL
Basic security guidelines for running MySQL

Choosing the Appropriate Installation Method

The easiest way to install MySQL in Linux is using a rpm distribution. If your
Linux distribution is not rpm based, you can also use a pre-packaged binary
distribution. This last method requires having the gunzip and tar tools present in
your system which are installed by default in Linux and you will need to have
enough privileges to create users and groups in the target system.

Either way, you should secure the MySQL installation at the end of the process.

Downloading the software

The official MySQL download site is located at
http://dev.mysql.com/downloads/ You can find several MySQL versions. We
will use MySQL 4.1.12 standard version which is the latest generally available
recommended release at the time this tutorial was written.

Installing using a rpm distribution

If you choose to install from rpm, the option that is most likely to fit your needs is
the one under the section Linux x86 RPM downloads.

For a minimal installation you will need to download two files. First, the MySQL
server whose name should be MySQL-server-4.1.13.i386.rpm, and secondly,
the standard MySQL client libraries, MySQL-client-4.1.13.i386.rpm. You will
find both files under the Linux x86 RPM downloads section.

Once you have downloaded the files issue the following command:

rpm -i MySQL-server-4.1.13.i386.rpm MySQL-client-4.1.13.i386.rpm

Layout of a rpm installation:

/usr/bin Client programs and scripts
/usr/sbin The mysqld server
/var/lib/mysql Log files, databases
/usr/share/doc/packages Documentation
/usr/include/mysql Include (header) files
/usr/lib/mysql Libraries

/usr/share/mysql Error message and character set files
/usr/share/sql-bench Benchmarks

Installing from a binary distribution

The steps necessary to successfully install MySQL from a binary distribution are:

1. Downloading the software
2. Uncompressing the software.
2. Execute post-installation procedures

These steps are described now in detail.

Downloading the MySQL binary distribution

As we previously stated, the official MySQL download site is located at
<http://dev.mysql.com/downloads/>, where you can find several MySQL
versions. We will use MySQL 4.1.12 standard version which is the latest
Generally Available recommended release.

The option that is most likely to fit your needs among binary distibutions is the
one under the section Linux downloads (x86, glibc-2.2, static, gcc).

The file you have to download will have a name similar to mysql-standard-
4.1.12-pc-linux-gnu-i686.tar.gz.

Uncompressing the binary distribution

You can uncompress the file you just downloaded using the gunzip utility (part of
the gzip distribution).

Change your current directory to /usr/local issuing:

cd /usr/local

You can now uncompress and unpack the software by typing the following
command:

gunzip < mysql-standard-4.1.12-pc-linux-gnu-i686.tar.gz | tar xvf -

Uncompressing the file creates a structure of directories, with the top-level
directory named mysql-standard-4.1.12-pc-linux-gnu-i686. Change the name
of the the top-level directory to msql:

mv mysql-standard-4.1.12-pc-linux-gnu-i686 mysql

Layout of a MySQL binary installation

bin Client programs and the mysqld server
data Log files, databases
docs Documentation, ChangeLog
include Include (header) files
lib Libraries
scripts mysql_install_db
share/mysql Error message files
sql-bench Benchmarks

Post-Installation Procedures

Add a login user and group for mysql:

/usr/sbin/groupadd mysql
/usr/sbin/useradd -g mysql mysql

Create the MySQL grant tables:

cd /usr/local/mysql
scripts/mysql_install_db --user=mysql

Change the ownership of program binaries to root and the ownership of the data
directory to the user that you just created to run mysql.

cd /usr/local/mysql
chown -R root .
chown -R mysql data
chgrp -R mysql .

Starting MySQL

After installing MySQL you can start the MySQL server issuing:

$ /usr/local/mysql/bin/mysqld_safe –-user=mysql &

You can verify that MySQL is up and running using mysqladmin, for example,
issuing:

$ /usr/local/mysql/bin/mysqladmin version

Testing MySQL

Once the MySQL server has been started you can test that you can retrieve
information from the server using the following examples:

$ /usr/local/mysql/bin/mysqlshow

$ /usr/local/mysql/bin/mysqlshow -u root mysql

Stopping MySQL

You can shutdown MySQL with the following command:

$ /usr/local/mysql/bin/mysqladmin -u root shutdown

Securing Your Installation

The MySQL grant tables define the initial MySQL user accounts and their access
privileges. The default configuration consists of:

��Two privileged accounts with a username of 'root' for connection from the

local host. These accounts have initially no password. That means that
anyone will be able to connect to the MySQL server as a superuser without
being asked for a password, and will be granted all privileges. To assign
passwords to the root accounts, make sure MySQL is started and use the
following commands:

$ mysql -u root

mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('newpwd');
mysql> SELECT Host, User FROM mysql.user;

Replace host_name in the following command with the result you got from
executing the command above:

mysql> SET PASSWORD FOR 'root'@'host_name' = PASSWORD('newpwd');

��Two anonymous-user accounts, both with an empty username for connection

from the local host. None of these accounts have a password initially. That
means that anyone will be able to connect to the MySQL server as a regular
user without being asked for a password. These anonymous accounts have
all privileges for the test database or other databases with names that start
with test_

To assign passwords to the anonymous account, make sure MySQL is
started and issue:

$ mysql -u root
mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('newpwd');
mysql> SELECT Host, User FROM mysql.user;

Replace host_name in the following command with the result you got from
executing the command above:

mysql> SET PASSWORD FOR ''@'host_name' = PASSWORD('newpwd');

It is strongly recommended that you do not have empty passwords for any
user accounts before using the server for any production work.

MySQL Basics

Connecting and disconnecting from the server

In order to connect to a MySQL server, you usually have to invoke the mysql
binary providing a MySQL username and if you specified a password for that
user, a password as well. If you are trying to connect to a remote MySQL server,
you will also need to provide a hostname. The command will look similar to this:

$ mysql -h hostname -u user -p
Enter password: ********

If that works, some introductory information followed by a mysql> prompt will
show up on the screen:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 4.1.12-standard

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

The prompt tells you that the server is ready to receive commands.

The default MySQL installation allows users to connect to the server on the local
host using anonymous accounts. In that case, you will be able to connect to that
server by invoking mysql without any options:

shell> mysql

You can disconnect from the server at any time by typing QUIT (or \q) or by
pressing Contro-D:

mysql> QUIT
Bye

MySQL Basic Query Commands

MySQL commands are not case sensitive, which means that you can use insert
with the same meaning of INSERT or WHERE with the same meaning of WhEre.
All MySQL instructions, except exit, have to finish with a semicolon ;

INSERT:

Once you have created a table, the INSERT SQL command is used for adding
new records to it.

The basic syntax of INSERT is:

INSERT INTO table_name (column list) VALUES (column values);

SELECT: SELECT is the MySQL command used to retrieve records from tables.
The syntax of this command can be from very simple to really complicated
depending on which fields from a table you want to select. The most basic
SELECT syntax looks like:

SELECT expressions_and_columns FROM table_name
[WHERE some_condition_is_true]
[ORDER BY some_column [ASC | DESC]]
[LIMIT offset, rows]

WHERE: This SQL command is used to specify a particular condition. Its syntax
is:

WHERE condition_is_true

ORDER: This command allows you to order the result of SELECT queries in a
specific way. Syntax:

SELECT column_1, column_2, column_3 from table_name ORDER BY column_2;

LIMIT: The LIMIT command allows you to return only a certain number of records
from a SELECT query result. Basic syntax:

SELECT column_1, column_2, column_3 from table_name ORDER BY column_2
 -> LIMIT 2;

UPDATE: UPDATE is the SQL command used to modify the contents of one or
more columns in an existing record. The most basic UPDATE syntax looks like
this:

UPDATE table_name
SET column1='new value',
column2='new value2'
[WHERE some_condition_is_true]

REPLACE: This command is a different method for modifying records, which is
similar to the INSERT command.

REPLACE INTO table_name (column list) VALUES (column values);

DELETE: The basic DELETE syntax is

DELETE FROM table_name
[WHERE some_condition_is_true]
[LIMIT rows]

5. Creating your first LAMP application

So far, we have learnt how to install and configure the different components of
the LAMP stack. We have learnt about how MySQL works and how to perform
basic database-related tasks. We have seen the basic building blocks and syntax
of the PHP language.

It is time now to learn how to write our own software applications on top of LAMP.
As you will see, PHP and MySQL make it incredibly easy to create simple web
applications.

This is possible because both are projects with a focus on ease of use and
solving real world problems. You can also take advantage of a great number of
open source libraries and components that cover most common aspects of web
development. The open nature of the LAMP platform allow your applications to
be easily be extended over time to meet new requirements.

The following sections cover the design of a LAMP-based application. For this
purpose, our project will be to add a news section to a current static website. We
will use the MySQL database to store the news and PHP to integrate them into
our website. Having the news items stored in a database will allow us to query,
search and manipulate them a variety of ways.

Creating the database

Lets start with the design of the database. In this case we start with a simple
table that contains the following columns:

id : A unique identifier for our news
date : The date for the news item
title : The heading for the news
summary : A summary for the news
description : The full news text

We can create this directly from the command line SQL client, but it is easier to
do so using phpMyAdmin, specially when you are just getting started with LAMP.
If using the default installation values, installation of phpMyAdmin is as easy as
downloading the software from http://www.phpmyadmin.net/ and uncompressing
it in the htdocs directory.

We access the phpMyAdmin main page, and create a new database called
“lamp” and enter the appropriate definition for the table news

Figure 1 The main phpMyAdmin page

Figure 2 Creating a MySQL database using phpMyAdmin

Figure 3 Creating a MySQL table using phpMyAdmin

As you can see in the following screenshot, phpMyAdmin will also display the
SQL used to create the table. This is very useful for learning and debugging
purposes.

Figure 4 SQL code used to create the table

Some of the fields in the table have special characteristics:

The "id" field is set to auto_increment. This will allow us to easily have unique ids
for each one of our news items. This entry has also been marked as being a
primary key. A primary key (or a combination of them) act as a unique identifier
for each database entry.

Three fields have been marked as FULLTEXT. This tells MySQL to scan and
index their contents, easing the task of searching later on. We will see how
this can be accomplished later on in the tutorial.

The summary field has been marked so it can contain NULLs, meaning they can
be empty. In that case, the news item will only have a title and the main body of
the news.

Populating the database

The next step is to add some entries into the database. For now, we will do it
using the phpMyAdmin tool. Later on, we will be see how to develop a custom
interface.

Since our application is centered around news, we take our examples from
"America's finest news source", http://www.onion.com

We will use, once again, the phpMyAdmin tool to populate the database, as
shown in figure 5

Figure 5 Creating a MySQL table using phpMyAdmin

Now that we have news in our database, it is time to use PHP to display them
in our website. The following code selects all news in our database and displays
them in the web page:

<style type="text/css"><!-- @import url("lamp.css"); --> </style>
<body>
<?

$conn = mysql_connect("localhost");
mysql_select_db("lamp", $conn);
$sql="SELECT * FROM news";
$result = mysql_query($sql, $conn) or die(mysql_error());

while ($row = mysql_fetch_array($result)) {
 echo "<div class=\"title\">" . $row['title'] . "</div>";
 echo "<div class=\"summary\">" . $row['summary'] . "</div>";
 echo "<div class=\"fullnews\">" . $row['fullnews'] . "</div>";
}

?>
</body>

The lamp.css contains a simple cascading style sheet :

.title {

font-size:15px;
font-weight:bold;
color:0000cc;

 text-transform:uppercase;
margin-top:30px;
width:800px;
text-align:left;

}

.summary {

font-size:12px;
font-weight:bold;
width:800px;
text-align:left;
margin-top: 20px;
margin-bottom: 20px;
background:#e5e5e5;
padding: 10px;

}

.fullnews {

font-size:12px;
line-height: 1.5;
width:800px;
text-align:left;
margin-top: 20px;
margin-bottom: 20px

}

Lets analyze in detail what each of the lines does

The mysql_connect function allows you to establish a connection to the database
server.

This function takes an argument that is a connection string of the form
"hostname:port" or "hostname:/path/to/mysql.sock". The first form describes the
hostname or IP address to connect to and the TCP port, in case we are
connecting to the database over TCP/IP. Although this carries a performance
penalty, it allows you to run your server and database in entirely separate
servers. The second form describes connection to the database using local
sockets. If not specified in the function call or defined in the php.ini configuration,
it defaults to "localhost:3306". A default MySQL install contains allows TCP/IP
connections only from the local host, reducing the chances of unauthorized users
connecting to the database server

You can also specify the default server to connect to using the
mysql.default_host configuration setting. Then there is no need to pass an
argument to mysql_connect(). Note that there is a difference between
"localhost" and 127.0.0.1. Whenever you specify "localhost" as the server name,
the client library will try to connect to the database using a local socket. If you
want to use TCP/IP, you will need to explicitly specify 127.0.0.1

If you need a username/password pair to access the database, you will need to
pass those as additional arguments to connect to the database:

$conn = mysql_connect("localhost", “username”, “password”);

There are a couple of optional, more advanced options to mysql_connect that are
described in detail in the PHP reference manual.

The mysql_select_db() function selects a specific database. If the database
does not exist, or we do not have permissions to access it, we will get an error.
We do not check for the error now, but rather when we execute the query, which
is done with mysql_query(). The line with mysql_query() executes an SQL
query in the server and stores the results in the $result variable. If there was
an error, it will print the related information using mysql_error(). The error
could be caused because of problems executing the query or because earlier
calls to connect to the database did not succeed.

The rest of the code iterates over the returned rows and prints them to the
screen. Each one of the rows is retrieved and stored as an array using
mysql_fetch_array. Each one of the fields in the array can then be accessed
using the field names as keys into the associative array.

The following figure shows the result of running the list.php script:

Figure 6 Listing news items

As an alternative, we can display a summary of the news, and generate a link to
a different page that displays the full news item, as shown in the following listing:

<style type="text/css"><!-- @import url("lamp.css"); --> </style>
<body>
<?

$conn = mysql_connect("localhost");
mysql_select_db("lamp", $conn);
$sql="SELECT * FROM news";
$result = mysql_query($sql, $conn) or die(mysql_error());

while ($row = mysql_fetch_array($result)) {
 echo "<div class=\"title\">" . $row['title'] . "</div>";
 echo "<div class=\"summary\">" . $row['summary'] ;
 echo " [More...]"
. "</div>";
}

?>
</body>

Listing : list2.php

Which renders the following:

Figure 7 Listing news items summaries

For each news items, the script generates a URL that includes the ‘id’ value for
the item and points to a details.php page. This page can then access the
value through the _GET global variable, as shown in the next listing:

<style type="text/css"><!-- @import url("lamp.css"); --> </style>
<body>
<?

$conn = mysql_connect("localhost");
mysql_select_db("lamp", $conn);
$sql="SELECT * FROM news where id='" . $_GET['id'] . "'";
$result = mysql_query($sql, $conn) or die(mysql_error());

$row = mysql_fetch_array($result);
echo "<div class=\"title\">" . $row['title'] . "</div>";
echo "<div class=\"summary\">" . $row['summary'] . "</div>";
echo "<div class=\"fullnews\">" . $row['fullnews'] . "</div>";

?>
</body>
:

Listing : details.php

As you can see, the details.php page takes that id, selects the appropriate
news item from the database and displays it.

With the help of the previous examples, we already know how to search and
display news items. The next section explains how to create, delete and modify
items in the database using PHP.

Updating the database

The next step is to create a Web page that provides an easy to use interface so
the appropriate user can add new items to the database without having to use a
developer tool such as phpMyAdmin.

The first step is to create an HTML form so the user can input the data. We then
add the necessary PHP code to handle the form submissions. The end result is
shown in the following listing:

<html>
<head><title>Manage News</title></head>
<body>

<?
$conn = mysql_connect("localhost");
mysql_select_db("lamp", $conn);

if ($_GET['action'] == "delete") {
 $sql="DELETE FROM news WHERE id ='" .$_GET['id'] . "'";
 $result = mysql_query($sql, $conn) or die(mysql_error());
 echo "News item successfully deleted";
 $action = "insert";
} elseif ($_GET['action'] == "edit") {
 $sql="SELECT * FROM news where id=" .$_GET['id'];
 $result = mysql_query($sql, $conn) or die(mysql_error());
 $row = mysql_fetch_array($result);
 $title = $row['title'];
 $summary = $row['summary'];
 $text = $row['fullnews'];
 $action = "update";
} elseif ($_GET['action'] == "update") {
 $sql = "UPDATE news SET ".
 "title = '" .$_GET['title'] . "'," .
 "summary = '" . $_GET['summary'] . "'," .
 "fullnews = '" .$_GET['fullnews'] ."'" .
 "WHERE id =" .$_GET['id'] ;
 $title = $_GET['title'];
 $summary = $_GET['summary'];
 $text = $_GET['fullnews'];
 $action = "update";
 $result = mysql_query($sql, $conn) or die(mysql_error());
} elseif ($_GET['action'] == "insert") {
 $action = "insert";
 $sql = "INSERT INTO news (id , date , title , summary , fullnews)
" .
 "VALUES ('', 'now()', '" .
 $_GET['title'] . "', '" .
 $_GET['summary'] . "', '" .
 $_GET['fullnews'] . "');";
 $action = "insert";
 $result = mysql_query($sql, $conn) or die(mysql_error());
} else {
 $action = "insert";
}

?>
 <form action="manage.php" method="GET"><input type="hidden"
name="id" value="<? echo $_GET['id']; ?>">
 <table>
 <tr>
 <td colspan="2" align="center">Submit News</td>
 </tr>
 <tr>
 <td>Title</td><td><input type="text" name="title"
size="54" value="<? echo $title ?>"/></input></td>
 </tr>
 <tr>
 <td>Summary</td><td><textarea name="summary" cols="40"><?
echo $summary ?></textarea></td>
 </tr>
 <tr>
 <td>Text</td><td><textarea name="fullnews" cols="40"
rows="12"><? echo $text ?></textarea></td>
 </tr>
 <tr>
 <td colspan="2" align="center"><input type="submit"
name="action" value="<? echo $action ?>"></td>
 </tr>
 </table>
 </form>

</body>
</html>

Listing: manage.php

Figure 7: Editing a news item

To complement this form, we create a page that list all the news, together with
edit, delete buttons next to it that point to manage.php with the appropriate
action value.

<style type="text/css"><!-- @import url("lamp.css"); --> </style>
<body>
<?

$conn = mysql_connect("localhost");
mysql_select_db("lamp", $conn);
$sql="SELECT * FROM news";
$result = mysql_query($sql, $conn) or die(mysql_error());

while ($row = mysql_fetch_array($result)) {
 echo "<div class=\"title\">" . $row['title'] .
 " </div><a href=\"manage.php?action=edit&id=" . $row['id'] .
"\">Edit " .
 " <a href=\"manage.php?action=delete&id=" . $row['id'] .
"\">Delete
";
}

?>
</body>

Listing: list3.php

Which displays the following:

Figure 8: Listing news for editing

Searching the database

As we mentioned earlier, the FULLTEXT feature of MySQL makes it really easy
to add search capabilities to your database, as the following listing demonstrates:

<style type="text/css"><!-- @import url("lamp.css"); --> </style>
<body>

 <form action="search.php" method="POST">
 <table>
 <tr>
 <td>Search</td><td><input type="text" name="searchterm"
size="54" value="<? echo $_POST['searchterm'] ?>"/></input></td>
 <td colspan="2" align="center"><input type="submit"
name="search" value="search"></td>
 </tr>
 </table>
 </form>

<?

$conn = mysql_connect("localhost");
mysql_select_db("lamp", $conn);
$sql="SELECT * FROM news WHERE MATCH (title, summary, fullnews) AGAINST
('" . $_POST['searchterm'] . "');";
$result = mysql_query($sql, $conn) or die(mysql_error());

while ($row = mysql_fetch_array($result)) {
 echo "<div class=\"title\">" . $row['title'] . "</div>";
 echo "<div class=\"summary\">" . $row['summary'] . "</div>";
 echo "<div class=\"fullnews\">" . $row['fullnews'] . "</div>";
}

?>
</body>

Listing: search.php

The MySQL database indexes the text in the news items for us and allows us to
query easily query them with MATCH.

Figure 9: Searching

Sending Email

So far we have an interface that allows us to manage the news in our website.
Our next task is to add a new feature : We want to receive an email every time a
piece of news is added to the database. To do so, we can use the local
mail server, if you have one installed, or access a remote mail server using
SMTP.

To send email, we use the Mail package. This package is part of the PEAR
extension and application repository and it is included by default
with your PHP installation. There are other ways of sending email with PHP, but
we will not cover them in this tutorial.

The following code allows you to send email to news-alert@example.com :

include("Mail.php");
function mail_news($title, $summary, $fulltext) {

$recipients = "news-alert@example.com";

$headers["From"] = "news-admin@example.com";
$headers["To"] = "news-alert@example.com";
$headers["Subject"] = $title;

$params["host"] = "smtp.1and1.com";
$params["port"] = "25";
$params["auth"] = true;
$params["username"] = "user";
$params["password"] = "password";

$mail_text = $title . "\n\n" . $summary . "\n\n" . $fulltext;

$mail_object =& Mail::factory("smtp", $params);
$mail_object->send($recipients, $headers, $mail_text);
}

This is another example of how easy it is to add new functionality to PHP
programs by reusing existing open source libraries.

Creating PDF files

Lets say that you want to provide PDF versions of certain news to your
customers. It is really easy to do so using PHP. In fact there are a great
number of PHP libraries that allow you to generate PDF documents
dynamically. Some of them require a license for commercial usage. Some
others are completely free, such as the fpdf library. This library can be
obtained at http://www.fpdf.org/ and is entirely written in PHP, so it is
portable and can be used in most. The following code snippet allows you to
create a PDF version of a piece of news:

require('fpdf.php');

function ($title, $summary, $fulltext) {

$pdf=new FPDF();
$pdf->AddPage();
$pdf->SetFont('Arial','B',16);
$pdf->Cell(0,10,$title,0,1);
$pdf->SetFont('Arial','I',14);
$pdf->MultiCell(0,5,$summary,0,1);
$pdf->SetFont('Arial','',12);
$pdf->MultiCell(0,5, $fulltext);
$pdf->Output();

}

Security

So far, we have not considered any security-related aspects of web
programming. This has been done for the sake of simplicity. But the moment that

you are storing or displaying user-provided data on your web site, you need to
take steps towards correctly handling malicious data. It is also often necessary to
restrict access to parts of the website to only certain authorized users.

Escaping HTML and SQL

When inserting data into MySQL, there are certain data values that may interfere
with SQL syntax, such as the apostrophe ('). This and other characters need to
be escaped before being passed to the database. Not only can this break your
script in unexpected ways, but a malicious user could exploit these problems to
gain access to your data. PHP provides diverse mechanisms to achieve this.
Check the PHP manual pages for mysql_escape_string(), addslashes() and
get_magic_quotes_gpc() for more information on the topic.

Restricting access

Different access control methods can be implemented at each one of the layers
of the LAMP stack. At the operating system layer, using firewall rules. At the web
server layer, using Allow/Deny rules and HTTP authentication. At the PHP
layer, using form-based authentication. And, finally, at the MySQL layer
where users can be granted privileges for only accessing certain databases
and tables, for example.

A common example is restricting access to a particular directory or URL.
In this case, we want to restrict access to the page that allows news
management. We want to restrict access so it is only accessible from a
certain range of addresses and only to a particular user that needs to
provide a username and password. We can do so with the following Apache
configuration snippet :

<Location /manage.php>

Allow from 10.0.0.0/255.255.255.0
AuthType Basic
AuthName “News Submission”
AuthUserFile /usr/local/apache2/conf/htusers
AuthAuthoritative on
Require valid-user
Satisfy all

</Location>

You will need to use the Apache htpasswd utility to create the appropriate user
database htusers.

Conclusion

This tutorial has provided you with an overview of the LAMP platform capabilities,
the knowledge of how to set up your LAMP environment, and show you how
easy it is to create LAMP based applications. But there is much more to LAMP
components such as MySQL and PHP, including clustering, embedding, GUI
programming, script compilation. The following URLs are good starting point.
Best of luck with your LAMP journey!

MySQL website: http://www.mysql.com
Apache website: http://www.apache.org
PHP website: http://www.php.net
Apache news: http://www.apacheweek.com
Great PHP and MySQL tutorials: http://www.sitepoint.com
Free, easy-to-use LAMPStack distribution: http://www.bitrock.com

Acknowledgements

The material in this tutorial draws from many sources, including the MySQL, PHP
and Apache documentation. They are comprehensive, up-to-date references and
have played a great part in the success of the platform. In addition to them, you
can find more information in other Apache-related books I have
authored/coauthored:

Sams Teach Yourself Apache 2 ISBN: 0672323559
Sams Teach Yourself PHP, MySQL and Apache All in One ISBN: 0672327252
Apache Phrasebook ISBN 0672328364 (To be published December 2005)

Contact Info

The author can be reached at daniel@bitrock.com

