
Introduction to the Apache Web Server

Rich Bowen, Cooper McGregor, Inc

May 2, 2005

ii

Contents

1 History 1

1.1 Pre-history . 1

1.1.1 As We May Think . 1

1.1.2 WWW . 1

1.1.3 NCSA . 2

1.1.4 Netscape . 2

1.2 Apache . 2

1.3 The Apache Software Foundation . 3

2 Installing 5

2.1 Section objectives . 5

2.2 Building from source . 5

2.3 Contents of distribution file, 1.3 . 7

2.4 Contents of distribution file, 2.0 . 8

2.5 Running configure . 9

2.5.1 Building with mod perl . 10

2.5.2 Other, more complex installs . 10

2.5.3 Apache ToolBox . 11

2.5.4 2.0 . 11

2.6 apxs . 12

3 Starting and Stopping 13

iii

3.1 Apache process architecture . 13

3.1.1 Apache 1.3 . 13

3.1.2 Apache 2.0 . 14

3.2 apachectl . 17

3.3 httpd . 18

3.3.1 start . 18

3.3.2 stop . 18

3.3.3 Other options . 19

3.4 Starting at boot . 19

4 Configuration files 21

4.1 Introduction . 21

4.2 The files . 21

4.3 Config file syntax . 22

4.3.1 Directives . 22

4.3.2 Anatomy of directive docs . 22

4.3.3 Comments . 23

4.4 Sections . 24

4.5 Options . 26

4.6 Different config file . 26

4.6.1 Running multiple apache daemons . 26

4.7 GUI Configuration Tools . 26

5 .htaccess files 27

5.1 Configuration . 27

5.1.1 AccessFileName . 27

5.1.2 AllowOverride . 27

5.2 Performance . 27

5.3 Exercise . 29

iv

6 Virtual Hosts 31

6.1 IP-based virtual hosts . 31

6.2 Name-based virtual hosts . 32

6.3 General caveats, comments . 33

6.4 Exercise . 33

6.5 Additional notes, examples, etc . 34

6.5.1 /etc/hosts . 34

6.5.2 Your example virtual host sections . 34

6.5.3 #apache . 34

6.5.4 mod vhost alias . 35

7 MIME 37

7.1 HTTP headers . 37

7.2 MIME configuration . 38

7.2.1 AddType . 38

7.2.2 RemoveType . 39

7.2.3 DefaultType . 39

7.2.4 ForceType . 39

7.3 mod mime magic . 40

7.4 Encoding . 40

7.4.1 AddEncoding . 40

7.4.2 RemoveEncoding . 40

7.4.3 mod gzip . 41

7.5 Language . 41

7.6 Multiple file extensions . 41

7.7 Experiment . 41

8 URL Mapping 43

8.1 URL Mapping procedure . 43

8.2 Location . 43

v

8.3 Alias . 44

8.4 ScriptAlias . 44

8.5 AliasMatch and ScriptAliasMatch . 45

8.6 Regular Expressions . 45

8.7 Redirect . 45

8.8 RedirectMatch . 46

8.9 RedirectTemp and RedirectPermanent . 46

8.10 DocumentRoot . 46

8.11 Error documents . 46

8.12 Error documents in Apache 2.0 . 47

8.13 Other modules that handler URL mapping . 49

8.13.1 mod speling . 49

8.13.2 mod rewrite . 50

8.13.3 mod userdir and public html . 50

9 Content Negotiation 53

9.1 Client configuration . 53

9.1.1 Accept* headers . 53

9.1.2 Quality factors . 53

9.2 Negotiation Methods . 54

9.2.1 MultiViews . 54

9.2.2 Type map files . 54

9.3 Caching . 55

10 Indexing with mod autoindex 57

10.1 Options . 57

10.2 DirectoryIndex . 57

10.3 IndexOptions . 58

10.4 Additional directives . 60

10.4.1 HeaderName . 60

vi

10.4.2 ReadmeName . 60

10.4.3 IndexIgnore . 60

10.5 Searching and sorting . 60

10.5.1 Apache 1.3 . 60

10.5.2 Apache 2.0 . 60

10.6 Security Concerns . 61

11 Performance Tuning 63

11.1 Optimization, benchmarking and profiling . 63

11.2 ab . 63

11.3 Perl . 64

11.4 Optimizing hardware . 64

11.5 Tuning configuration settings . 65

11.5.1 HostnameLookups . 65

11.5.2 Symbolic links . 65

11.5.3 .htaccess files . 65

11.5.4 Negotiation . 65

11.5.5 Caching and proxying . 66

11.5.6 mod mmap static . 67

11.6 Process Creation . 67

11.6.1 MaxRequestsPerChild . 67

11.7 KeepAlive . 67

11.8 CGI/Other dynamic content . 67

12 CGI programming 69

12.1 Introduction - The CGI . 69

12.2 Apache configuration . 70

12.3 How a CGI program works . 70

12.4 Common problems . 73

vii

13 SSI 75

13.1 Configuration for SSI . 75

13.2 XBitHack . 76

13.3 mod include configuration directives . 76

13.4 SSI directives . 77

13.4.1 config . 77

13.4.2 timefmt . 77

13.4.3 echo . 78

13.4.4 exec . 78

13.4.5 fsize . 78

13.4.6 flastmod . 78

13.4.7 include . 78

13.4.8 printenv . 79

13.5 Variables and flow control . 79

13.6 Security . 79

14 Handlers and Filters 81

14.1 Handlers . 81

14.1.1 Configuration directives . 81

14.1.2 Standard handlers . 83

14.1.3 Custom handlers . 86

14.2 Filters . 86

14.2.1 Chaining filters - CGI + SSI . 87

14.2.2 mod deflate . 87

15 mod perl 89

15.1 Overview - What is mod perl? . 89

15.2 Installation . 89

15.3 mod perl installation caveats . 89

15.4 Configuration . 90

viii

15.4.1 PerlRequire . 90

15.5 Connecting to your database . 90

15.6 CGI under mod perl . 90

15.6.1 Apache::PerlRun . 90

15.6.2 Apache::Registry . 92

15.7 Apache handlers with mod perl . 92

15.7.1 Installing a mod perl handler from CPAN . 92

15.8 Writing a mod perl handler . 93

15.8.1 Example mod perl handlers . 93

15.8.2 Installing the example mod perl handler . 94

15.8.3 Configuring the mod perl handler . 94

15.9 Common problems . 94

15.9.1 Don’t exit . 94

15.9.2 Restart the server . 94

15.9.3 Global values . 95

15.10Other phases . 95

15.10.1PerlAccessHandler . 95

15.10.2PerlLogHandler . 96

15.10.3Perl configuration sections . 96

15.11More information . 96

16 Logging 97

16.1 Standard log files . 97

16.1.1 access log . 97

16.2 Location and format of the log file . 99

16.3 mod log io . 99

16.4 Exercises . 100

16.4.1 Error logs . 100

16.4.2 LogLevel . 100

ix

16.5 Typical errors . 100

16.5.1 Things to remember! . 101

16.6 Logfile reporting . 101

16.6.1 What your log file tells you . 101

16.6.2 What your log file does not tell you . 101

16.6.3 Log file parsing . 102

16.7 Logging to a process . 102

16.8 Logging to syslog . 102

16.9 Rotating log files . 103

16.9.1 Logfile::Rotate . 103

16.9.2 rotatelogs . 104

16.9.3 logresolve . 104

16.10Logging for multiple virtual hosts . 104

17 Authentication, Authorization, Access Control 105

17.1 Definitions . 105

17.2 Basic Authentication . 105

17.3 Configuration . 105

17.4 FAQ . 106

17.5 Basic Auth Caveats . 107

17.6 Digest Auth . 107

17.7 Configuration for Digest auth . 107

17.8 Authentication against other things . 107

17.8.1 mod auth db . 108

17.8.2 mod auth mysql . 108

17.9 Access Control . 108

17.9.1 Satisfy . 109

18 Spiders 111

18.1 Introduction . 111

x

18.2 Potential problems . 111

18.3 Spiders in the logs . 111

18.4 Excluding spiders from your site . 112

18.4.1 robots.txt . 112

18.4.2 ROBOTS metatag . 112

18.4.3 Yell at the operator . 112

18.4.4 Block by address . 113

18.4.5 Blocking with Deny from Env . 113

18.5 Writing your own spider . 113

19 Security 115

19.1 Overview . 115

19.2 File permissions . 116

19.2.1 Content directories . 116

19.2.2 Library . 116

19.2.3 bin . 116

19.2.4 logs . 117

19.2.5 proxy . 117

19.2.6 public html . 118

19.3 Configuration . 118

19.3.1 ServerTokens . 118

19.3.2 ServerTokens - hacking the source . 119

19.3.3 ServerSignature . 120

19.4 SSI . 120

19.5 CGI . 120

19.5.1 CGI exploit example - trusting form input . 121

19.5.2 CGI exploit example - hidden form fields . 121

19.6 Default file system settings . 122

19.7 UserDir . 122

xi

19.8 Modules . 123

19.9 suexec . 123

19.10mod security . 124

19.11mod dosevasive . 124

20 SSL 127

20.1 Intro . 127

20.2 Installing SSL . 127

20.3 Certificates . 128

20.4 Configuration . 128

21 modules 131

21.1 Module list . 131

21.1.1 Apache 1.3 modules: . 131

21.1.2 Apache 2.0 modules: . 132

21.1.3 What’s new, and what’s missing . 132

21.2 mod access . 132

21.3 mod actions . 133

21.4 mod alias . 133

21.5 mod asis . 133

21.6 mod auth . 134

21.7 mod auth anon . 134

21.8 mod auth db . 134

21.9 mod auth dbm . 134

21.10mod auth digest . 135

21.11mod autoindex . 135

21.12mod cern meta . 135

21.13mod cgi . 136

21.14mod digest . 136

21.15mod dir . 136

xii

21.16mod env . 136

21.17mod example . 137

21.18mod expires . 137

21.19mod headers . 137

21.20mod imap . 137

21.21mod include . 138

21.22mod info . 138

21.23mod log agent . 138

21.24mod log config . 138

21.25mod log referer . 139

21.26mod mime . 139

21.27mod mime magic . 139

21.28mod mmap static . 139

21.29mod negotiation . 140

21.30mod proxy . 140

21.31mod rewrite . 140

21.32mod setenvif . 141

21.33mod so . 141

21.34mod speling . 141

21.35mod status . 142

21.36mod unique id . 142

21.37mod usertrack . 142

21.38mod vhost alias . 142

22 WebDAV 143

22.1 mod dav on 1.3 . 143

22.2 mod dav on 2.0 . 143

22.3 DAV clients . 144

23 mod proxy 145

xiii

23.1 Caching . 145

23.2 Proxying . 146

23.3 Rewrite and proxying . 146

23.4 mod proxy html . 146

23.5 General comments . 146

xiv

Section 1

History

This section is an attempt to acquaint the student with the history, as well as the historical roots, of the
Apache project - how it came to be, why it came to be, and how it has progressed. Additionally, we attempt
to give a little bit of context of the surrounding people and projects which shaped the web, and the Apache
project.

Finally, we try to give some understanding of the Apache Software Foundation, and what its goals are.

1.1 Pre-history

1.1.1 As We May Think

Apache came into existence 4 years after the creation of the World Wide Web. The Internet had been around
for a while by then, and frameworks such as Gopher were already in place and in widespread use. But the
ideas that formed the Web had been around for at least 45 years.

As We May Think, in In 1945, Vannevar Bush wrote a paper called which he discusses the way that
we think, the way that our minds move from one topic to another, and the ways that technology needed
to evolve to service the way that we think. Reading his thoughts on this matter, couched in terms of the
technology that was then available, is provides interesting insights into our own time. You can obtain this
entire document at
http://www.theatlantic.com/unbound/flashbks/computer/bushf.htm

1.1.2 WWW

The initial uses of the Internet were primarily communication driven. Email has always been the “killer
app” of the Internet.

In 1990, Tim Berners Lee (TBL) was working at the CERN (European Center for Nuclear Research) and
needed a way to make large amounts of information available to the researchers in a quick, efficient manner.
Building on ideas already in widespread use, like HyperCard and its relatives, he invented the World Wide
Web, and coined the terms hyperlink and hypertext.

1

He wrote the CERN web server, and the www client software, terming it a “browser”.

1.1.3 NCSA

In 1992 or thereabouts, a project started at NCSA (The National Center for Supercomputing Activities)
at UIUC (University of Illinois at Urbana-Champaign to develop a graphical web browser, which was code-
named “Mosaic”, although the name “Mozilla” was also used.

As part of that project, the NCSA HTTPd was also written.

Mosaic was not the first graphical web browser, as has sometimes been claimed since then, but it quickly
became the most popular.

You can read more about this at http://www.webhistory.org/www.lists/www-talk.1993q1/0262.html

Rob McCool was the primary author of the NCSA NTTPd code, and his name still appears in the default
httpd.conf file.

1.1.4 Netscape

In 1995, Mosaic Communications, quickly renamed to Netscape Communications, was founded taking most
of the programming talent from the NCSA HTTPd project

This left a void for those web sites which were running the NCSA software, particularly in a growing economy
where people had come to rely on their web sites.

1.2 Apache

The Apache project was started simply as a place to collect patches for the NCSA HTTPd. The original
“Apache Group” consisted of 8 guys who wanted to add functionality to, and fix problems with, the existing
HTTPd code.

• Brian Behlendorf

• Roy T. Fielding

• Rob Hartill

• David Robinson

• Cliff Skolnick

• Randy Terbush

• Robert S. Thau

• Andrew Wilson

2

The name “Apache” was, apparently, picked by Ben Laurie out of respect for the Apache people.1

The other form of this story is that Apache is simply another way of saying that it was “A Patchy” server.

See also http://httpd.apache.org/ABOUT_APACHE.html and
http://www.geocrawler.com/mail/thread.php3?subject=name&list=417

Randy Terbush wrote the Apache Software License, based on the BSD Software License, ensuring that the
software will be free and open.

• C2.net donates server space for Apache.org

• April 1995 - Apache 0.6.2 released

• December 1995 - Apache 1.0, a complete rewrite, released.

– Main advance here is modularization of code.

– Project codenamed ”Shambala”

– Robert Thau main developer of this code

– Same basic code base in use today in 1.3.x

• 1997 - Open/Free software goes mainstream

– 1997 - The Cathedral and The Bazaar

– Apache deal with IBM - Apache forms codebase for WebSphere

– Apache Software Foundation formed

– Revision of License to be more palatable to IBM - Advertising clause removed

– 1997 - Apache 1.3 released, with Windows support

• May 2000 - Apachecon Orlando - Apache 2.0 alpha released

• October 2000 - ApacheCon Europe - Douglas Adams speaks, one of his final speaking ops before he
suddenly died.

• April 2001 - ApacheCon Santa Clara - Apache 2.0 initial beta release

• April 2002 - Apache 2.0.35 releases as GA (General Availability). 2.0.36 follows shortly after with some
important fixes.

• May 2002 - Apache 1.3 enters maintenance mode (No new features, just bug fixes and documentation
updates).

• http://uptime.netcraft.com/up/today/top.avg.html

1.3 The Apache Software Foundation

The ASF was formed for a number of reasons. The catalyst was the IBM deal, and their desire to deal with
an actual legal entity. However, the impact of creating the ASF was rather larger than that.

The goals of the ASF are:

1I recommend reading Chasing Shadows by Shelley Ann Bowen Hatfieid (no relation) about the Apache people.
http://www.amazon.com/exec/obidos/asin/0826318533

3

• provide a foundation for open, collaborative software development projects by supplying hardware,
communication, and business infrastructure;

• create an independent legal entity to which companies and individuals can donate resources and be
assured that those resources will be used for the public benefit;

• provide a means for individual volunteers to be sheltered from legal suits directed at the Foundation’s
projects; and,

• protect the ’Apache’ brand, as applied to its software products, from being abused by other organiza-
tions.

4

Section 2

Installing

http://httpd.apache.org/docs/install.html

2.1 Section objectives

In this section, the students will each have to install Apache themselves. They should each have a server
system which does not have Apache installed. They should download the Apache source, verify the pgp
signature and MD5 sum, unpack and install from source. They should experiment with the arguments to
./configure and should install Apache with and without DSO support. If the machines are reasonably fast,
they should try multiple installations, and see what happens.

Students should install Apache 1.3 and Apache 2.0, and should verify that both are functioning correctly, at
the same time, running on different ports.

Students should then reinstall Apache 1.3 using Apache ToolBox, enabling any modules which you wish to
use in the remainder of the course. In particular, you will probably want to enable mod ssl, mod perl, and
mod php.

Make sure that Apache 2 is installed with DAV and dav-fs enabled.

2.2 Building from source

Although many Unixes come with some version of Apache preinstalled, there are many arguments for in-
stalling the server yourself.

• Exactly the way you need it

• Optimized for your hardware

• Ensure nothing strange added

• Directory structure that makes sense to you

5

This is a good point to encourage discussion of package management systems, particularly if your students are
already fond of a particular unix distribution that is tied to a package management system. The arguments
for installing from source seem rather weak when weighed against the convenience of a package management
system. However, there are times when it is necessary to install from source, and so it is useful to know how
to do it.

Get source from http://httpd.apache.org

Latest releases are 1.3.33 and 2.0.52. 2.1 is in development, and there is not yet a downloadable packaged
version of it.

The site is mirrored around the world, and downloading Apache from a mirror site is of great benefit to the
ASF, financially. Our monthly bandwidth bill is astronomical.

Next, you really need to verify the distribution using the MD5 sum, and, if possible, the PGP signature
that are available from the site. However, you should get these from the official Apache site, rather than the
mirror site. The rationale here is that if the distro was compromised, the signature files probably were also.

Verify the distribution

There are two ways to verify the distribution. The MD5 sum can be used as follows:

md5sum httpd 2.0.52.tar.gz

Verify that the output of that command matches the contents of the .md5 file. Note that the md5sum utility
is just called md5 on some Unixes.

To verify the pgp signature, you will need to first import the keyring from the Apache site:

Download http://www.apache.org/dist/httpd/KEYS:

wget http://www.apache.org/dist/httpd/KEYS

gpg --import KEYS

You can use curl or GET, if you have one of those installed. The GET utility gets installed when you install
the LWP suite of modules for Perl.

Finally, verify the signature with:

gpg --verify httpd_2.0.52.tar.gz.asc

Unpack the distribution

tar -vzxf httpd-2.0.52.tar.gz

6

Note that the -z flag is a gnu-tar thing, and may not be available in all versions of tar, although it is more
common now than it used to be.

Change into the directory

Build it ...

./configure --prefix=/usr/local/apache

make

make install

Note that if you run ./configure as a non-root user, Apache will be configured to run on port 8080. This
is very annoying, but being aware of it mostly solves the problem. Tell students that they really only need
to be root in order to make install, and then see what happens. This is mostly for your own information,
since at least one student will do this, and then you’ll be left wondering why it’s not working.

2.3 Contents of distribution file, 1.3

We now take a brief step back to look at the contents of the distribution file, so that the student knows
what we’re working with. You’ll need to familiarize yourself with the contents of each of the directories in
the distribution, so that you can explain any files that they may ask about. Note that the layout for 2.0 is
different from that for 1.3, having been reorganized for a variety of reasons.

• cgi-bin

– Sample CGI programs

– Usually not executable, for security reasons

The rationale here is that, if every web server on the planet has a particular CGI program installed
and enabled, and some day, for some reason, someone finds a security exploit in it, it will be a
simple matter to crack any server on the planet. Thus, we ship sample cgi programs, but don’t
enable them by default, and recommend that they be used for testing only.

– --cgidir=DIR

• conf

– Starter configuration files

– Will not overwrite your existing configs

That is, if you modify your configuration file, and then reinstall Apache, your changes will be
preserved. This is particularly important for this exercise, as, after installing Apache the first
time, we want to install it again, perhaps several times, with a very different configuration. Thus,
each time, we want to remove our configuration file before installing Apache again. Make sure
that you explicitly talk about this at this point, as at least one student will forget to do this, and
you need to have mentioned it so that you don’t look like this problem caught you off-guard.

– Variables filled in based on your build arguments

ServerRoot @@ServerRoot@@

LockFile @rel_logfiledir@/accept.lock

7

Show the students these variables in the pre-install configuration file, and demonstrate to them
how these variables are filled in after the fact. Demonstrate this with several different arguments
for the various directories, or with a –with-layout= flag.

– --sysconfdir=DIR

• htdocs

– ”It’s working” page

This page is available in 20 or 30 languages. You should get the correct one, based on your
browser preferences. You might want to demonstrate this as a preview of the content negotiation
chapter.

– Manual

– --manualdir=DIR Specifying the –manualdir flag will cause the entire user manual to be placed
elsewhere, and an Alias to be inserted in the configuration file pointing to that location

• icons

– Icons used in auto directory listings

– --iconsdir=DIR

The manual and the icons are the only directories of content that are generally installed by default.
icons is always installed outside of the document directory, but the manual is usually installed inside
the document directory. There was an attempt to change this, several versions ago, and move the
manual outside of the document directory by default. For some reason, this confused people, and it
was made an option, with the default being inside the document directory. Thus, the --manualdir

flag is fairly new.

• logs

– Initially empty

• src

– Source code for Apache server

– Subdirs for a variety of things - main, modules, helper apps, etc

It would be useful at this point to demonstrate modifying a source code file, and rebuilding Apache
with the change. The recommended example follows:

Apache 1.3

src/include/httpd.h, line 429 (in version 1.3.27, anyways)

Modify the name of the product (SERVER BASEPRODUCT) to be something else, like ”Harry’s
Happy HTTPd”, then rebuild. Demonstrate what a HEAD request returns now.

Note that this is just a gimmic, not a security measure. See
http://httpd.apache.org/docs/misc/FAQ.html#serverheader for more discussion on this matter.

2.4 Contents of distribution file, 2.0

Mostly the same, somewhat different layout.

Root-level directories:

8

• build

• docs

• include

• modules

• os

• server

• srclib

• support

• test

docs contains several subdirs that used to be elsewhere:

• cgi-examples

• conf

• docroot

• error (Error documents)

• icons

• man

• manual

These were placed in a docs/ folder primarily so that the documentation team could have one cvs checkout
on which to work. In other words, it got moved because I complained. It’s nice to have a little influence
sometimes! ;-)

The cgi examples and the default configuration are, technically, considered to be the realm of the documen-
tation team, because they are about best practices.

2.5 Running configure

The configure script, located in the root directory of the Apache distribution, configures your Apache
compilation.

9

./configure --help

./configure --prefix=/home/httpd --show-layout

./configure --prefix=/usr/local/apache --enable-module=most

--enable-shared=max

./configure --prefix=/usr/local/apache --enable-module=speling

./configure --prefix=/usr/local/apache --enable-module=speling

--enable-shared=speling

You need to run each of the above commands on the big screen, and explain to the students what each of
these commands do. Of particular importance are the lines relating to shared objects, as this will come up
repeatedly later. When you are done with this section, you really should end up with an Apache installation
where everything is a so. We will later build a module with apxs, and swap out the so, to show how easy
this is.

You should also demonstrate the config.layout file, and building Apache with a different layout. This
should be demonstrated with the --show-layout flag, rather than doing an actual install. You will find that
installing everything in /usr/local/apache, as the default setting, will give you less to clean up afterwards,
and make it easy for everyone to find things that they need to find during the class. It is important for
everyone to have files in the same place, in order for your examples not to confuse the folks who put it
somewhere else.

2.5.1 Building with mod perl

gunzip mod_perl-1.xx.tar.gz

tar -vxf mod_perl-1.xx.tar

cd mod_perl-1.xx

perl Makefile.PL APACHE_SRC=../apache_1.3.20/src

DO_HTTPD=1 USE_APACI=1 EVERYTHING=1

make

make install

2.5.2 Other, more complex installs

README.configure is a wonderful resource for installing strange and wonderful combinations of modules.
And any 3rd party modules should have detailed instructions for building them.

You should read README.configure at least once through, to see the sorts of things that are mentioned in
there. Going through one of the example installs in there, particularly one for module(s) that you’re not
familiar with, can be a very educational experience.

10

2.5.3 Apache ToolBox

http://www.ApacheToolBox.com/

• Automates build process for any combination of modules.

• Downloads libraries, modules, other stuff, that you don’t already have installed

• Has to be updated for each new rev of Apache, so can be behind a little

Apache Tool Box is a shell script which automates the process of downloading and building packages. It is
useful in that it prevents you from making silly typing errors, and in that it knows how to install modules
with strange requirements. Also, it will download any prerequisites that you don’t have, and verify the
signatures on those files. This makes (usually) for a very easy installation.

Unfortunately, ApacheToolbox is only available for 1.3, Fortunately, installing additional modules on 2.0
tends to be easier and less prone to problems.

Note!

When we reinstall from Apache ToolBox, make sure that you remove/move/backup
your configuration file, as make install will not overwrite your configuration file.

2.5.4 2.0

./configure --help

The 2.0 configure processes uses GNU autoconf, rather than the home-rolled thing that 1.3 used. So the
configure process will look much more familiar to people used to building Unix software.

For the purposes of this class, you should built Apache 2.0 with:

./configure --with-mpm=worker --enable-ssl

We are going to add other modules as we go along. Hopefully you will become very familiar with apxs.

• Change User and Group directives to be valid

• Start it up

11

2.6 apxs

apxs is a Perl utility for the purpose of installing modules as shared objects. You must have mod so already
installed for this to work.

We’re going to add mod rewrite to our existing Apache installation using apxs

/usr/local/apache/bin/apxs -cia mod_rewrite.c

12

Section 3

Starting and Stopping

http://httpd.apache.org/docs/invoking.html

http://httpd.apache.org/docs/stopping.html

In this section we discuss the utilities for starting and stopping Apache, including persuading Apache to
start when your system boots up. Along the way, we’ll talk about the various Apache process architectures,
and how to choose the one that’s right for you.

3.1 Apache process architecture

It is useful to understand the Apache architecture before we go much farther.

While this may seem like a bit of a tangent, this is by far the best place to put this in, and helps understand
some basic things about how Apache uses your system. It also helps understand why you have to start it as
root, but why this is still secure, as well as numerous other things which will be useful in the long run.

This section is also crucial for understanding many future sections, such as performance, the User and Group

directives, and security.

3.1.1 Apache 1.3

With Apache 1.3, Apache runs as multiple processes, each of which is capable of handling incoming HTTP
requests. A single parent process, running as root, manages the pool of available servers, creating new ones
as they are needed, and reaping excess ones when load is reduced.

The size of this pool of servers is controlled by the directives MinSpareServers and MaxSpareServers, which
specify how many idle processes there should be at any given time. When a new client request comes in, one
of the idle processes is delegated to handle that request. If this causes the number of idle processes to dip
below MinSpareServers, then Apache will create a new child process to add to the pool. Likewise, when
a client disconnects, Apache will, if necessary, kill off child processes to ensure that there are no more than
MaxSpareServers idle processes in the pool.

13

The “correct” value for these directives will vary a great deal from one web site to another. The goal is to
make sure that your spare server pool is sufficient to soak up any spikes in traffic.

On Windows, there is no reliable way to fork processes, and so a different model is used by default. There
is a parent process, and a single threaded child process. Each thread is able to handle client connections.
However, there is a fixed number of threads.

3.1.2 Apache 2.0

Apache 2.0 introduces the MPM model

The MPM - Multi Processing Module - is a way for the particular multi-processing technique of a given
platform to be abstracted out. Two examples of multi-processing are threads and forking, and these are two
of the available MPMs. With Apache 1.3, this code was contained in if blocks, which were long, icky, and
confusing. With 2.0, they are moved out into modules, and you pick the one that is most appropriate for
your particular needs and platform. On Unix, you have a number of choices. On non-Unix systems, you are
usually limited to a single choice.

• Prefork

• Worker

• Perchild

• Win32

• OS/2

• Netware

• Various others

At this point, you may wish to rebuild Apache 2.0 using the worker MPM, so that you can see the difference
that it makes in your process list, if nothing else. Since it takes a significant time to rebuild, you may want
to do this and then send folks on a coffee break while it compiles.

./configure --with-mpm=worker

./configure --with-mpm=prefork

prefork

http://httpd.apache.org/docs-2.0/mod/prefork.html

14

...

Parent
process

Child
1

Child
2

Child
n

• This is the default

• Looks just like Apache 1.3

• Very robust, but perhaps slower than worker

Robust, because a crash takes out one connection only. However, creating new child processes is slower and
more expensive than creating new threads. And, since they take up a bigger memory footprint, you can run
fewer of them - hence, less scalable.

worker

http://httpd.apache.org/docs-2.0/mod/worker.html

...

Parent
process

Threaded child processes

• Multi-process, multi-threaded

• Each child, fixed number of threads

• Launch, reap child processes to deal with changes in load

• ThreadsPerChild

Faster, and less memory use. But less robust because a crash takes out a large number of connections, and
so a single problem affects many users. This is the most-recommended MPM, with the following caveats:

• Threading does not work very well on some platforms, like FreeBSD

15

• Some modules, like mod php, don’t work very well in a threaded environment, and so you need to stick
with prefork if you’re using php.

• Of course, some modules just don’t work at all on 2.0 yet, and in that case you have to stick with 1.3

perchild

http://httpd.apache.org/docs-2.0/mod/perchild.html

...

Parent
process

Threaded child processes

• Does not work yet

• Multi-process, multi-threaded

• Allows configuring things per child process

In a nutshell, here’s what perchild does, and why it is cool:

perchild lets you configure Apache per child. Hence the name. In other words, you can actually have a
different configuration for each Apache child process.

This allows you to run virtual hosts as a particular user (as opposed to just the cgi programs, like suexec lets
you do). It lets you configure one vhost to run 10 threads, and another to run 200 threads. To specifically
assign a particular child process to a particular vhost. And so on. It is very cool. But we should probably
quit talking about it, since it is largely imaginary, and likely to remain so for some time.

win32

Parent

Threaded
Child

16

• Windows only

• Way faster than Apache 1.3 on Win32

• Uses completion ports for additional performance

Clearly, this course could use more meat on the Win32 sections. It would be nice to have at least screen shots
of a Win32 installation, and the Apache Monitor thingy that they’ve added. I’m ashamed to admit that I
now know almost nothing about Apache in Windows, having given a number of presentations at ApacheCon
about it in the past.

3.2 apachectl

• start

• stop

– Signals parent process

– Parent kills child processes

– Kills self

– If you just kill child processes, parent will respawn them

• restart

– Unceremoniously kills child processes

– Re-reads config file

– Respawns child processes

• graceful

Like restart, but waits for each child to finish what it is doing.

Note that if you have long-running processes, this will cause a restart to take a very long time. During
the restart, no new connections will be accepted.

• startssl

– Starts SSL

– Uses -D argument

– Talk about this when we get to SSL

• configtest

– Checks conf files

– Talk about this when we get to configuration

• status

– Checks status

– Need to have mod status installed

– Talk about this when we get to handlers

17

• help

apachectl symlink

You may want to:

cd /usr/local/bin

ln -sf /usr/local/apache/bin/apachectl ./

so that apachectl is in your path. This will make life easier throughout the rest of the
course.

3.3 httpd

3.3.1 start

/usr/local/apache/bin/httpd

/usr/local/apache/bin/httpd -f /path/to/other/config.file

/usr/local/apache/bin/httpd -DSSL -DOtherVar

3.3.2 stop

cat /usr/local/apache/logs/httpd.pid | xargs kill

killall -9 httpd

rm -f /usr/local/apache/logs/httpd.pid

• httpd.pid contains the PID (process ID) of the parent Apache process

• Each child runs as a separate process

• If you kill children first, parent relaunches them

18

3.3.3 Other options

/usr/local/apache/bin/httpd -h

Usage: /usr/local/apache/bin/httpd [-D name] [-d directory] [-f file]

[-C "directive"] [-c "directive"]

[-v] [-V] [-h] [-l] [-L] [-S] [-t] [-T]

Options:

-D name : define a name for use in <IfDefine name> directives

-d directory : specify an alternate initial ServerRoot

-f file : specify an alternate ServerConfigFile

-C "directive" : process directive before reading config files

-c "directive" : process directive after reading config files

-v : show version number

-V : show compile settings

-h : list available command line options (this page)

-l : list compiled-in modules

-L : list available configuration directives

-t -D DUMP_VHOSTS: show parsed settings (currently only vhost settings)

-t : run syntax check for config files (with docroot check)

-T : run syntax check for config files (without docroot check)

Have the students run this command, and experiment with various of the command line options. Encouraging
the students to experiment tends to be very hard work, but it is richly rewarding for them later.

3.4 Starting at boot

Various systems will have different ways of doing this. Most Unixes have scripts in /etc/rc.d which run on
system startup. Somewhere in here, you will want to put ...

/usr/local/apache/bin/apachectl start

.. in one of those startup scripts, like, perhaps, rc.local or rc.httpd

Note that some Unixes, like Solaris and RedHat Linux, for example, have a more developed concept of run
levels, and you have to work within that framework if you want different things to happen at different run
levels.

Also, many Linux’es have rather advanced ideas of what a startup script should or should not do. This
can cause confusion in later tech support questions, but knowing how the underlying system works tends to
simplify these questions.

19

20

Section 4

Configuration files

http://httpd.apache.org/docs/mod/directives.htmlhttp://httpd.apache.org/docs/mod/core.html#include

4.1 Introduction

Apache is configured with plain text files. While there are GUI (Graphical User Interface) tools for configuring
Apache, most of this section, as well as the rest of this book, will assume that you will configure Apache
using a text editor, and editing these files. (See Section 4.7 for information about GUI configuration tools.)

4.2 The files

Configuration may be in several places:

• httpd.conf

There used to be 3 distinct configuration files, each of which could contain only a
particular type of configuration directive. httpd.conf was the main server configura-
tion file, and contained directives relating to the operation of the primary functions
of the server. srm.comf (Server Resource Management) contained directives relating
to the resources that the server could use, such as files and directories. access.conf

contained directives relating to access control and authentication.
There was a great deal of confusion as to what directives should go into which files. This
confusion was actually increased when the restriction was lifted, and any configuration
directive could go anywhere. Seems that people would rather be told where to put
what than to be able to choose.
Finally, in 1.3.7, this whole state of affairs was put to rest, and the three configuration
files were combined into httpd.conf. The two other files were retained, but contained
nothing more than a comment encouraging you not to use the files for real directives.

httpd.conf is the main server configuration file. Some third party distributions of Apache may call
this file something different. Popular choices are apache.conf and apache2.conf.

21

The location of this file is built into the Apache binary, and can be ascertained by running:

% /usr/local/apache2/bin/httpd -V | grep SERVER CONFIG

(Of course, the location and name of the httpd binary can vary too, so you may need to find that
first.)

• .htaccess files

• Include another file

• Include a directory

– Path relative to ServerRoot

– All files - watch out for temp files

4.3 Config file syntax

4.3.1 Directives

ServerName www.apacheadmin.com

ServerAlias www apache.rcbowen.com apache

4.3.2 Anatomy of directive docs

Syntax

A description of the syntax of the directive

Default

The default value, if any. Many directives have a setting in the default configuration file, and that this is
not necessarily the same thing as the default value.

Context

Where are you allowed to use this directive? One or more of the following:

server config - Means that it can be used in the main body of the server configuration file, outside of any
containers or sections.

virtual host - Can be used within a VirtualHost container.

22

directory - Can be used in a <Directory> section, or similar section (ie, <Location>, <Files>, etc.

.htaccess - May be used within a .htaccess file, if AllowOverride is set appropriately. (See the value of
Override for details.)

Override

What AllowOverride setting is necessary in order to permit the use of this directive in .htaccess files?

Status

What is the status of the module which provides this directive? (Core, Base, Extension, Experimental)

Module

What module provides this directive

Compatibility

Are there differences between different Apache versions that you need to know about?

AcceptPathInfo Directive

Description: Resources accept trailing pathname information

Syntax: AcceptPathInfo On|Off|Default

Default: AcceptPathInfo Default

Context: server config, virtual host, directory, .htaccess

Status: Core

Module: core

Compatibility: Available in Apache 2.0.30 and later

4.3.3 Comments

This is a comment. I like comments.

Comments are ignored during the loading of the configuration file. The default configuration file is roughly
70% comments, which serve to explain the configuration directives. A comment is any line that begins with
a # character. The # should be the first non-whitespace character in the line. You cannot add comments
onto the end of a directive line. A comment appears by itself on a line. There is no block comment notation
- each line must begin with a #.

23

4.4 Sections

May also see them referred to as containers, or scope.

<Directory /usr/local/apache/htdocs>

... directives ...

</Directory>

A section defines the scope in which a particular directive, or directives, are effective. In the above example,
the directives are effective only when content is being loaded from the directory /usr/local/apache/htdocs.

Sections apply to everything beneath them. That is to say, content coming out of /usr/local/apache/htdocs/rodents
is also subject to these directives.

• <Directory>

<Directory /usr/local/apache/htdocs/example>

Options +Indexes

</Directory>

Restricts the contained directives to the specified directory, and subdirectories thereof.

• <DirectoryMatch>

<DirectoryMatch [Dd]ownload>

Options +Indexes

</DirectoryMatch>

Restricts the contained directives to directories that match the specified pattern. In the given example,
any directory that contains the string download or Download will have the directive applied to it.

• <Files>

• <FilesMatch>

Allowing you to be a little more fine-grained, you can specify a particular file or set of files. The
<Files> directive takes just one file as an argument, which is perhaps not expected, given the name
of the directive. To specify more than one file, you can use FilesMatch:

<FilesMatch (one|two|three).html>

SetType text/plain

</FilesMatch>

• <IfDefine>

If a particular -D variable is defined, then use this configuration. For example, you might start the
server with:

24

httpd -DUSESSL

Then you could add a config like:

<IfDefine USESSL>

SSLEngine On

</IfDefine>

• <IfModule>

Checks to see if a particular module is loaded.

<IfModule mod_perl.c>

SetHandler perl-script

</IfModule>

The configuration section is completely ignored if the specified module is not loaded.

• <Limit>

• <LimitExcept>

Limits directive scope by method. Very seldom useful.

<Limit GET POST>

order deny,allow

deny from all

allow from 192.168

</Limit>

You’ll see many Authentication tutorials that tell you to use this syntax when setting up password
protection. Ignore them.

• <Location>

• <LocationMatch>

Map a URL to a handler. We’ll look at Location more when we talk about handlers. See Section 14
for more details.

• <VirtualHost>

Specifies the layout and function of a virtual host.

Much more about this at a later date. See Section 6 for more details.

• <Proxy>

Allows configuration to be applied to proxied content. See Section 23 for more details.

• Other

Any third-party module is free to define its own sections. For example, mod perl lets you create <Perl>
sections containing Perl code to be executed at server startup.

25

4.5 Options

• ExecCGI (See CGI)

• FollowSymLinks (See security, performance)

• SymLinksIfOwnerMatch (See security, performance)

• Includes (See SSI)

• IncludesNOEXEC (See SSI)

• Indexes (See autoindexing)

• MultiViews (See Content Negotiation)

• All

• None

4.6 Different config file

apachectl -f /usr/local/apache/conf/other.conf

• Multiple Apache daemons

• Test configurations

• Restarting to a backup config when something new breaks

4.6.1 Running multiple apache daemons

You can run multiple Apache servers off of the same Apache binary, simply by starting it up with different
configuration files.

Each Apache server process must run on a different port and/or address. Also make very sure that you set
the PidFile directive differently for each server, so that each process can be managed independently.

You can talk to the correct process by using the -f flag on apachectl

apachectl -f /etc/apache/server1.conf -k restart

apachectl -f /etc/apache/server2.conf -k stop

4.7 GUI Configuration Tools

26

Section 5

.htaccess files

5.1 Configuration

5.1.1 AccessFileName

Configures the name of the file that will be looked for in each directory.

5.1.2 AllowOverride

• AuthConfig

• FileInfo

• Indexes

• Limit

• Options

• All

• None

http://httpd.apache.org/docs-2.0/mod/core.html#allowoverride

5.2 Performance

Checks for .htaccess in EVERY directory up to the location of the file that is being served. Possibly a big
performance hit.

For example, if you are serving a file out of the directory /usr/local/apache/htdocs/services/training/apache/tutorial
then Apache will (possibly) look for the files:

27

/.htaccess

/usr/.htaccess

/usr/local/.htaccess

/usr/local/apache/.htaccess

/usr/local/apache/htdocs/.htaccess

/usr/local/apache/htdocs/services/.htaccess

/usr/local/apache/htdocs/services/training/.htaccess

/usr/local/apache/htdocs/services/training/apache/.htaccess

Note that this is the absurd worst case, and never happens in practice. In order to make this happen,
you’d have to have AllowOveride All set for / which nobody in their right mind would ever do. On the
other hand, we should not assume anything. People unaware of the impact of this might indeed to that for
convenience. But in practice, you end up checking for .htaccess files down to whatever lowest level you have
permitted AllowOverride.

Thus, if you:

<Directory /usr/local/apache/htdocs>

AllowOverride All

</Directory>

Then you’d really only get requests for:

/usr/local/apache/htdocs/.htaccess

/usr/local/apache/htdocs/services/.htaccess

/usr/local/apache/htdocs/services/training/.htaccess

/usr/local/apache/htdocs/services/training/apache/.htaccess

Which is still a little much, but less serious. Note, however, that dropping the AllowOverride directive
in this scenario gives 2- or 3-fold performance improvement, even for directories where you’re not using
.htaccess files at all, based on my benchmarks. I’d recommend that you do your own benchmarks to verify
these numbers.

• Directives found will be applied in the order that they are found, overriding previous settings.

• This is done every time a file is served

• Can have multiple settings for AccessFileName

AccessFileName .htaccess .acl directory.conf

In which case, it will look for each of these files in each directory

28

5.3 Exercise

Create .htaccess file in your document directory, containing the following, or something like it:

DirectoryIndex default.htm

Create a default.htm file in that directory, and get the .htaccess file working.

Students seem to require a lot of hand-holding here. They will need to do a number of things to get this
working, and the idea is to get them to do as much of it by themselves as possible. They will need to:

Create default.htm

Create .htaccess

Enable AllowOverride appropriately for the directory in question.

Encourage them to use the correct AllowOverride setting, rather than just using All. Impress upon them
the dangers of using AllowOverride Options, which is, of course, included in All.

29

30

Section 6

Virtual Hosts

http://httpd.apache.org/docs/vhosts/index.html

A virtual host (vhost for short) is a means of running more than one web site on the same Apache server.
This can be done one of two ways:

• IP-based virtual hosts

• Name-based virtual hosts

Fortunately, the procedure is almost identical. There’s really just one small difference.

What you’ll need today

• Ability to edit hosts file

• Basic understanding of DNS and/or name resolution in general

• Some patience

6.1 IP-based virtual hosts

http://httpd.apache.org/docs/vhosts/ip-based.html

• Requires a unique IP address for each host

• The preferred (only, really) way to do SSL hosts

• A little less confusion as to which vhost gets picked

31

<VirtualHost 192.168.1.7>

ServerName www.foo.com

DocumentRoot /home/foo/htdocs

CustomLog /home/foo/logs/access_log common

</VirtualHost>

You should use the IP address, rather than the server name, as the argument to the VirtualHost directive.

Most directives are valid in a VirtualHost section. See the docs for a particular directive to see what context
they are valid in.

If you like, you can have students bind a secondary IP address to their network card, and set up virtual
hosting that way. Alternately, and much easier, you can have them set up vhosts on 127.0.0.2, 127.0.0.3,
etc. This can be entertaining, and often students learn something they didn’t know about networking in the
process.

Also, setting up IP-based vhosts first tends to help people understand name-based vhosts a little better.

6.2 Name-based virtual hosts

http://httpd.apache.org/docs/vhosts/name-based.html

• One IP address, multiple hosts

• Can’t do SSL this way

• Can end up having overlaps and/or conflicts if you misunderstand the configuration

NameVirtualHost 192.168.1.7

<VirtualHost 192.168.1.7>

ServerName www.foo.com

...

</VirtualHost>

<VirtualHost 192.168.1.7>

ServerName www.boxofclue.com

...

</VirtualHost>

Notes:

32

• Argument to NameVirtualHost and to VirtualHost must the exactly the same literal string, or it will
not know that you are dealing with the same address Best to use * rather than a particular address

NameVirtualHost *

<VirtualHost *>

ServerName www.coopermcgregor.com

DocumentRoot /usr/local/apache/vhosts/cmi

</VirtualHost>

<VirtualHost *>

ServerName www.boxofclue.com

ServerAlias boxofclue.com clueful.com

DocumentRoot /usr/local/apache/vhosts/clue

</VirtualHost>

• Can specify a port:

NameVirtualHost *:443

NameVirtualHost 192.168.1.5:8080

• The only real difference between name-based and IP-based (in the configuration, that is) is the
NameVirtualHost directive.

• You only need to put directives in one of these sections where they differ from the global setting

• See later section on logging for info about per-vhost logs

Make sure that the class understands that these vhosts are running on the same IP address, and the same
port. The only way that the server knows which vhost you want is the Host: header that gets sent with the
request. This is why old browsers (ie, pre 1996 - nothing to worry about) and telnet requests tend to get
the wrong vhost.

6.3 General caveats, comments

• If you set one host up as a vhost, you should probably set all hosts up that way. 50+ % of the vhost
problems that we see on #apache are because default configurations are overriding vhost configurations

• Use Listen not Port

• Consider putting each vhost config in its own file. This will save you hassle and confusion later

6.4 Exercise

1. Add 2 or more additional names to your ”/etc/hosts” file (virtual1 and virtual2)

2. Set up a virtual host for each one (put vhosts in /usr/local/apache/vhosts/servername)

33

3. Verify that they are serving content out of different directories

4. If you run into any problems, ask the folks on #apache for help. They have promised to be nice.

6.5 Additional notes, examples, etc

6.5.1 /etc/hosts

/etc/hosts is a file containing mappings from name to IP address for your machine. Entries in the file look
like:

192.168.1.104 virtual1

Once that entry has been added, the name virtual1 will immediately start resolving to the IP address
192.168.1.104. This is just for you. other people will not see this mapping. You may need to restart your
browser to have this take effect, as most browsers cache name records.

6.5.2 Your example virtual host sections

For the exercise above, you should have ended up with a configuration that looked something like:

NameVirtualHost *

<VirtualHost *>

ServerName virtual1

DocumentRoot /usr/local/apache2/vhosts/virtual1

</VirtualHost>

<VirtualHost *>

ServerName virtual2

DocumentRoot /usr/local/apache2/vhosts/virtual2

</VirtualHost>

6.5.3 #apache

#apache, referred to in the above section, is an IRC channel. If you are not familiar with IRC, this may
seem a little odd. IRC - Internet Relay Chat - is real-time chat over the Internet. #apache is the name of
a “channel” on which people talk about (most of the time) Apache and related topics. #apache is on the
irc.openprojects.net network.

If you have a IRC client installed (XChat is nice) you can connect to this server, and join this channel. There
is usually at least one person there who knows what they are talking about.

34

6.5.4 mod vhost alias

At this point in the course, if we have time, we’ll experiment with mod vhost alias, which is a module
allowing bulk virtual hosting. You’ll find a sample configuration in the examples directory on your CD,
which should look something like this:

VirtualDocumentRoot /usr/local/apache/vhosts/%1.1/%1.2/%1.3+/htdocs

VirtualScriptAlias /usr/local/apache/vhosts/%1.1/%1.2/%1.3+/cgi-bin

As this is primarily a hands-on experiment, little space is given to this in the notes. Please see
http://httpd.apache.org/docs-2.0/mod/mod vhost alias.html for more information.

Students tend to want more experimentation here, so I’ve attempted to add some better examples that they
can play with. Have them try one or more of the following:

VirtualDocumentRoot /usr/local/apache/vhosts/%2/%1/htdocs

Which should map www.foo.com to /usr/local/apache/vhosts/foo/www/htdocs and bob.foo.com to
/usr/local/apache/vhosts/foo/bob/htdocs

or ...

VirtualDocumentRoot /usr/local/apache/vhosts/%1.1/%1.2+/htdocs

Which should map www.foo.com to /usr/local/apache/vhosts/w/ww/htdocsand bob.foo.com to /usr/local/apache/vho

In order to actually try these things, they will need to create a lot of directories and add a lot of hostfile
entries. This is only useful in practice for wildcard DNS entries.

35

36

Section 7

MIME

http://httpd.apache.org/docs/mod/mod mime.html

MIME - Multipart Internet Mail Extensions - was created in order that attachments could be sent via email,
rather than having email restricted to plain text only. HTTP is built around MIME, and headers in general.
Perhaps this section would better be labeled HTTP Headers.

• Multipart Internet Mail Extensions

• RFC 2045 - 2049

• HTTP based entirely on MIME standards

• MIME header tells the browser what type of document it is getting

• Content-Type: major/minor

• Content-Type: text/html

• Content-Type: image/gif

• Content-Type: Application/Unknown

• The browser has a list of mappings to applications, so that it knows how to display the content.

7.1 HTTP headers

Slight rewind here - HTTP is all about headers. Most of the information about a transaction is contained
in the headers. The body is actually quite uninteresting (at least from a protocol perspective).

http://webtools.mozilla.org/web-sniffer - Tool for viewing the complete HTTP transaction, including all
headers.

Or, try http://www.web-caching.org/showheaders.html

or, http://www.mdb.ku.dk/tarvin/http_tool

37

• Content-Length

• Content-Encoding

• Location

• Format is Header: value

• Headers are not case-sensitive

• Headers are terminated by a blank line

Header: value

Header: value

Header: value

Body here

• The message is over when Content-Length bytes have been served.

• On dynamic documents, either the size is calculated before the document is delivered, or it is delivered
in chunks, with a Content-Length header on each chunk. (This is called ”chunked encoding”.)

7.2 MIME configuration

TypesConfig

• conf/mime.types

• Maps types to file extensions

• audio/x-realaudio ra

• video/mpeg mpeg mpg mpe

• Don’t add mime types here

• Not case sensitive, dot not required

The reason that you don’t edit the TypesConfig file is that on “make install” the TypesConfig file is over-
written, always, no matter what changes you have made to it. Changes may have been made to this file at
the standards-board level, and you need to get those new file types, or whatever. So you should make your
changes using the directives below to alter the MIME types mappings.

7.2.1 AddType

• AddType image/png .png

• AllowOverride FileInfo lets you put these in .htaccess files

38

AddType application/x-tar tgz

Note that a surprising number of students will want to get pedantic about the “x-” in the mime type above.
It’s not clear why it is there, but browsers recognize it, and expect it. Although Internet Explorer will also
work without it it, some older versions of Netscape will not.

7.2.2 RemoveType

• Removes a mapping that was previously in place

The scenario here is a site that has a cgi directory with examples of the software, and then a download
subdirectory containing the source code, so that people can download and examine the code. While
better directory organization might be more in order, this at least illustrates the concept. See also
RemoveEncoding.

<Directory /www/docs/products>

Options +Includes +ExecCGI

AddType application/x-httpd-cgi cgi

</Directory>

<Directory /www/docs/products/conference>

Options -ExecCGI

RemoveType cgi

</Directory>

• Removes the mapping

• Remember that directives trickle down through the directory tree unless explicitly overridden like this

7.2.3 DefaultType

• This type is used unless another is explicitly set

• Core directive, not a mod mime directive.

• text/html by default, if not set

7.2.4 ForceType

• Sets the MIME type for all files in the scope, regardless of filename

• ForceType image/gif

Example: Images uploaded from digital camera called dc00034, dc00035, dc00036, etc, without a file
extension. Rather than having to rename all the files to something.jpg, I can just:

39

<Directory /usr/local/apache/htdocs/photos>

ForceType image/jpg

</Directory>

7.3 mod mime magic

• Determines file type based on content of file.

• Runs the file program to determine

• magic.conf contains mappings to mime types

7.4 Encoding

• Usually compression

• Can be other encoding, such as uuencode

• Is additional to content type

• Can have multiple file extensions to convey this information

• resume.doc - Microsoft Word document

• resume.doc.zip - PKZipped Microsoft Word document

• The default is that a file is sent as is, with no encoding

7.4.1 AddEncoding

• Adds an encoding mapping to a particular file extension

• AddEncoding pkzip .zip

• AddEncoding gzip .gz

7.4.2 RemoveEncoding

• RemoveEncoding gz

• Removes any encoding that has been associated with the specified file extension

This directive has been useful on the Apache download site itself. Files with a .tar.gz file extension should
probably not be sent with a gzip encoding, as this will cause them to be uncompressed upon arrival, which
is typically not the desired behavior. Likewise, on the Apache site, we want .tar.gz.asc files that contain the
gpg signature for the corresponding .tar.gz file, but are not themselves either a .tar or a .gz file. Thus, when
sent with a gzip content encoding, they arrive as a zero-byte file, since there is no valid gzip content in the
file.

40

7.4.3 mod gzip

More will be said about mod gzip later. Files are compressed as they are sent out to the client, and an
additional Content-Encoding header is attached to the file to let the browser know that the content needs
to be decoded (uncompressed) before it can be displayed.

7.5 Language

• Content-Language header specifies the language that is being sent

• Browser configuration can determine the preferred language (See Content Negotiation)

• Can be set in addition to other attributes

7.6 Multiple file extensions

Files can have more than one file extension in order to convey more than one of the above pieces of infor-
mation.

file.tar.gz.en

file.tar.Z.fr

file.html.gz.de

There’s no great value of going into much detail here with the language stuff, as we will get into much greater
depth in the Content Negotiation section, which is just a few down the line.

You may also wish to make a note that multiple file extensions conveying the same piece of information will
cause all but the last one to be ignored. Thus file.doc.tar.txt is a text file, not a doc or tar file.

7.7 Experiment

• In your vhost directory, create a file called something.abc

• Add a MIME type to this file extension

• Verify that your browser loads it with this MIME type, and asks you what it is supposed to do with
it.

The purpose of this exercise is to illustrate that you can make up your own file types, and cause the browser
to behave a certain way upon receiving that file type. This is how people come up with custom plug ins, file
handlers, or whatever. You have some client-side application that gets mapped to a particular MIME type
header.

Note also that Internet Explorer occasionally thinks that it is smarter than you. That is, it will, in some con-
ditions, follow the file extension rather than the MIME type. Thus, a txt file with an Application/Unknown

41

MIME type (in order that the user will be forced to choose a file location to download and save the file, for
example) may in fact be displayed in the browser as plain text by IE, which follows the file extension rather
than the MIME type.

While this is clearly undesirable behavior, you should note that somewhere between 70 and 98% of your
audience will be running IE, and you must plan accordingly.

Fortunately, this is not a web design course. However, this is a reminder to test with several browsers in
order to assure correct behavior everywhere.

42

Section 8

URL Mapping

http://httpd.apache.org/docs/sections.html

8.1 URL Mapping procedure

The process of translating a URL into an actual something that is sent out to the user.

While most folks seem to subconsciously assume that URLs map to some file on the server, this is not always
the case. In fact, as the web becomes progressively more dynamic, this is less and less the case. URLs map
to resources, where the definition of “resource” varies greatly.

The URL mapping phase is when the server tries to figure out what a URL means - ie, what “resource” the
URL refers to, whether it is actually a file, or something else entirely.

This section covers the various ways that the server administrator can force a particular URL to map to a
particular resource, with the default behavior being to try to look for a file of the specified name.

8.2 Location

• Not tied to file space

• Usually maps to a handler or script

The Location container is used to limit the scope of directives to a range of URLs - a subset of “url-space”,
if you will. It is often used for the purpose of mapping URLs to a particular handler, but this is by no means
the only way that it can be used. It can occasionally be used as a substitute for the Directory directive,
but the meaning is somewhat different, in that it matches a URL rather than a directory, and so applies to
URLs that don’t actually map to a directory.

43

8.3 Alias

• Maps a URL to a directory, often outside of the DocumentRoot directory

Used to map a URL to a directory - usually a directory outside of the main document directory, although
this is not necessarily the case. The default distro, for example, comes with an Alias for the documentation
(/manual) which points to a directory within the document root. This is so that you can move it if you want
to, but is really rather redundant. For one release (1.3.25 perhaps?) /manual actually did move outside of
the document root, but it moved back in the next release because it irritated people who don’t like change.

The Alias for /icons/, on the other hand, points to a directory that has always been outside of the document
root.

Important note about Alias. The slashes must match. That is, if the first argument contains a slash, the
second one should also. Thus:

Alias /foo /var/www/foo

Note that the first argument (/foo) has no trailing slash, and, thus, the second argument (/var/www/foo)
also should not. When the slashes don’t match, bad things happen. Alias is taken very literally. The string
in the URL is replaced verbatim with the argument provided. This can result in file paths with too many
slashes, or two few, depending on which side you erred.

For example, if you have:

Alias /icons/ /usr/local/apache/icons

You will end up with errors in your logs which say something like:

File /usr/local/apache/iconssomething.gif not found

Note the missing / between icons and something.gif. That’s your clue that this is what is happening.

8.4 ScriptAlias

• Maps a URL to a directory, and indicates that the directory contains CGI programs

ScriptAlias /cgi-bin/ /usr/local/apache/cgi-bin/

44

Equivalent to ...

Alias /cgi-bin/ /usr/local/apache/cgi-bin/

<Directory /usr/local/apache/cgi-bin/>

Options +ExecCGI

SetHandler cgi-script

</Directory>

8.5 AliasMatch and ScriptAliasMatch

• Just like Alias and ScriptAlias, but with regular expressions

8.6 Regular Expressions

This is a bit of an aside, but is useful for the rest of this stuff to make sense.

Regular expressions are a means of matching arbitrary patterns in text. It can be a very full-featured library
of pattern matches. Here’s the smaller list of them:

You can actually spend a pretty substantial amount of time on Regular Expressions if you really want to.
Here we try to keep it down to the basics, with a little more detail in the next few pages. Apache 1.3 uses the
regex engine from egrep (or at least that same one) and Apache 2.0 uses PCRE, which is more full-featured.

. Matches anything
+ One or more of the previous character

Zero or more of the previous character
[] Character class - match one thing in here
? Optional
^ Start of string
$ End of string
^ (Inside a character class) Not

8.7 Redirect

• Maps a URL to an external URL. (Alias is always to an internal document)

Redirect /HyperCal.html http://www.coopermcgregor.com/products/hypercal/

45

8.8 RedirectMatch

• With regexes

RedirectMatch [sS]upport(.*) http://www.coopermcgregor.com/support/

Redirectmatch [dD]r[Bb]acc?h?us.* http://www.drbacchus.com/

RedirectMatch (.*) https://otherserver.com$1

8.9 RedirectTemp and RedirectPermanent

• Generate different redirect codes

8.10 DocumentRoot

• If all else fails, it must be a request for an actual document, so we look in the DocumentRoot for the
path requested.

8.11 Error documents

• Maps an error condition to a more useful error message

• ErrorDocument 404 /cgi-bin/404.cgi

• ErrorDocument 404 http://www.errors.com/

• ErrorDocument 500 /errors/500.html

• ErrorDocument 403 ”You need to log in first”

Quotes on ErrorDocument
In Apache 1.3, when you specify a string argument to ErrorDocument, you start with
quotes, but do not close the quotes on the end of the string. In Apache 2.0, you need
to close the quotes.

Example of a 404 CGI handler.

In your configuration file, put:

ErrorDocument 404 /cgi-bin/404.cgi

46

Then /cgi-bin/404.cgi will look like:

#!/usr/bin/perl

use Mail::Sendmail;

use strict;

my $message = qq~

Document not found: $ENV{REQUEST_URI}
Link was from: $ENV{HTTP_REFERER}
~;

my %mail = (

To => ’admin@server.com’,

From => ’website@server.com’,

Subject => ’Broken link’,

Message => $message,

);

sendmail(%mail);

print "Content-type: text/html\n\n";
print "Document not found. Admin has been notified";

This is a good hands-on exercise for the students, in that it will suggest to them things that they can do in
their own environment that will be more useful. The tests can be made conditional, or set up to send batch
email rather than one per error, or other things. You may wish to implement a number of these on your
own, so that you can display a few example alternatives.

8.12 Error documents in Apache 2.0

Apache 2.0 has a new way of handling ErrorDocument that will mean much more customizable error mes-
sages, rather than the same old boring ”Document Not Found” errors.

In you Apache 2.0 default configuration file, you will see the following:

47

<IfModule mod_negotiation.c>

<IfModule mod_include.c>

Alias /error/ "@@ServerRoot@@/error/"

<Directory "@@ServerRoot@@/error">

AllowOverride None

Options IncludesNoExec

AddOutputFilter Includes html

AddHandler type-map var

Order allow,deny

Allow from all

LanguagePriority en es de fr

ForceLanguagePriority Prefer Fallback

</Directory>

ErrorDocument 400 /error/HTTP_BAD_REQUEST.html.var

ErrorDocument 401 /error/HTTP_UNAUTHORIZED.html.var

ErrorDocument 403 /error/HTTP_FORBIDDEN.html.var

ErrorDocument 404 /error/HTTP_NOT_FOUND.html.var

ErrorDocument 405 /error/HTTP_METHOD_NOT_ALLOWED.html.var

ErrorDocument 408 /error/HTTP_REQUEST_TIME_OUT.html.var

ErrorDocument 410 /error/HTTP_GONE.html.var

ErrorDocument 411 /error/HTTP_LENGTH_REQUIRED.html.var

ErrorDocument 412 /error/HTTP_PRECONDITION_FAILED.html.var

ErrorDocument 413 /error/HTTP_REQUEST_ENTITY_TOO_LARGE.html.var

ErrorDocument 414 /error/HTTP_REQUEST_URI_TOO_LARGE.html.var

ErrorDocument 415 /error/HTTP_SERVICE_UNAVAILABLE.html.var

ErrorDocument 500 /error/HTTP_INTERNAL_SERVER_ERROR.html.var

ErrorDocument 501 /error/HTTP_NOT_IMPLEMENTED.html.var

ErrorDocument 502 /error/HTTP_BAD_GATEWAY.html.var

ErrorDocument 503 /error/HTTP_SERVICE_UNAVAILABLE.html.var

ErrorDocument 506 /error/HTTP_VARIANT_ALSO_VARIES.html.var

</IfModule>

</IfModule>

In the directory @@ServerRoot@@/error/ you will find all of those .html.var files, which contain SSI directives
for building custom ErrorDocument pages. And, thanks to the efforts of several people, they are avaialable
in several languages. These error documents can be customized to your heart’s content.

The 404 page, for example, looks like the following, in English:

48

<!--#set var="TITLE" value="Object not found!" -->

<!--#include virtual="include/top.html" -->

The requested URL was not found on this server.

<!--#if expr="$HTTP_REFERER" -->

The link on the

<a href="<!--#echo encoding="url" var="HTTP_REFERER"-->">referring

page seems to be wrong or outdated. Please inform the author of

<a href="<!--#echo encoding="url" var="HTTP_REFERER"-->">that page

about the error.

<!--#else -->

If you entered the URL manually please check your

spelling and try again.

<!--#endif -->

<!--#include virtual="include/bottom.html" -->

As you have the full array of SSI variables at your disposal, this lets you customize this page as much as you
like.

8.13 Other modules that handler URL mapping

8.13.1 mod speling

• Corrects common typos

• CheckSpeling On

Handles transposition of characters, common mistypes (l instead of 1, o instead of 0, etc) and mis-capitalizations.
Makes things run slower, but is very useful in migrating from Windows to Apache, for example.

Also, if there are several possible matches, you will get a listing of choices.

Exercise: Turn on mod spelling checking for your server. Experiment with URL correction

49

8.13.2 mod rewrite

• Alter URLs on the fly as they come in

• Will be covered in more detail on day 5 Examples in the slides, but we’ll not dwell on them, as they
will be discussed in detail later.

8.13.3 mod userdir and public html

• URLs that begin with ~ (tilde) map to that user’s directory

http://www.uky.edu/~rbowen/

• UserDir specifies where that home directory is supposed to be

Serve files out of /home/username/public html

UserDir public html

Serve files out of somewhere else

UserDir /www/users/*/htdocs

• Be careful with permissions.

There should be a discussion here about file permissions, home directory security, and why things are
the way that they are. Possibly talk about perchild here, although that may be getting a little silly,
now that perchild has been untouched for more than 6 months.

If UserDir is set to public html, then you must assure that /home and /home/username and /home/username/public html
are all readable and executable by the Apache user (defined in the User directive). The x is necessary
in order for Apache to get directory listings.

If the users are concerned that this creates an unacceptable security situation, then they are paying
attention. Good job.

Users should not put anything directly in /home/userdir, but should put it in subdirectories thereof,
and this really should take care of any security concerns that they may have. I’ve never quite understood
why people got so uptight about this.

On the other hand, the contents of the public html directory is world readable, which means that even
content that is password protected on the web will be fully available to anyone that has an account
on the server itself. This can be a concern on systems where multiple users are rending web space.
There’s not really any way around this, unfortunately.

• Disable for certain users

UserDir enabled

UserDir disabled root hackerdude rbowen

Or, better still, only enable for a few trusted users:

50

UserDir disabled

UserDir enabled rbowen sungo krietz

51

52

Section 9

Content Negotiation

http://httpd.apache.org/docs/mod/mod negotiation.html

http://httpd.apache.org/docs/content-negotiation.html

Content negotiation is a server-side means of choosing for the user the document that best suits their
preferences, as configured in their browser settings

This is accomplished by a combination of client-side settings and server-side configuration.

Content Negotiation does not translate documents. Try not to laugh when a student asks you this. It may
seem absurd, but at least one student will ask how it manages to translate the documents into different
languages, and how many languages it knows, or variations on that theme.

9.1 Client configuration

9.1.1 Accept* headers

Sent by the client to say what content types, and languages, they wish to receive. See content-negotiation.html
(full URL above) for more complete discussion.

Edit -> Preferences -> Navigator -> Languages for language configuration options.

At this point, you should show the students the output of printenv, or another of the standard CGI programs
that displays environment variables, and discuss the Accept* headers at length, making sure that they
understand what each means. You should configure your browser to request several languages in order to
make these headers more interesting.

9.1.2 Quality factors

Associated with each content type, these further specify what document types (language, content type,
character set) are preferred over others.

53

9.2 Negotiation Methods

9.2.1 MultiViews

Options +MultiViews

Multiple variants of a particular document are placed in a directory, and MultiViews turned on for that
directory. Following the algorithm described in the documentation, the file that most closely matches the
preferences specified by the user is chosen and returned.

Example:

Client requests the resource index

In the directory, we have the following files:

index.html.en

index.html.fr

index.html.de

index.txt

index.pdf

If the client browser specifies that it prefers to receive documents in German, then this client will receive
the document index.html.de, because it most closely matches the client’s requirements.

Content negotiation via MultiViews is very slow, as it must get a directory listing in order to consider the
files that match the name of the resource requested.

Important to note that the client can request the resource as index rather than index.html, in order to
consider a wider range of possible variants of the file. If the resource index.html is requested instead, the
files index.txt and index.pdf would not even be considered.

9.2.2 Type map files

Rather than leaving Apache to fend for itself, you can do some of the work for it by creating a type-map
file, listing all variants of a particular document, and the information about these variants.

This file would be called either example.var or example.html.var, depending on whether you wanted to
negotiate for the URL “example” or “example.html”.

54

URI: example

URI: example.html.en

Content-type: text/html

Content-language: en

URI: example.html.fr

Content-type: text/html;charset=iso-8859-2

Content-language: fr

You can also specify content quality:

This file would be called picture.var

URI: picture

URI: picture.jpg

Content-type: image/jpeg; qs=0.8

URI: picture.gif

Content-type: image/gif; qs=0.5

URI: picture.txt

Content-type: text/plain; qs=0.01

The scenario here is that you have a particular picture available in a high-quality jpeg image, a low-quality
gif image, and as ASCII art. Depending on the browser’s preferences, they may get one version or another.
Presumably, a text-only browser which rejects images entirely could still get the ASCII art version of the
image, and still (sort of) appreciate the experience.

You’ll need the following to enable this:

AddHandler type-map .var

9.3 Caching

Caching can be problematic because it may mean that a client might get a document that was right for
someone else, but not for themselves.

For example, Pierre down the hall goes to CNN.com first thing in the morning, and gets the site in French,
which is then cached. The rest of the day, everyone else keeps getting it in French, because they are getting
it from the caching proxy server.

55

Note, however, that CacheNegotiatedDocs is off by default, and it’s unlikely that anyone will ever turn it
on.

CacheNegotiatedDocs Off

56

Section 10

Indexing with mod autoindex

http://httpd.apache.org/docs/mod/mod autoindex.html

If a directory is requested, such as http://www.rcbowen.com/imho/, then Apache can ...

1. Serve an index file

2. Display a file listing

3. Product an error message

10.1 Options

The Indexes option turns on the ability to display a directory listing in the event that there is no index file
in the directory.

<Directory /usr/local/apache/icons>

Options +Indexes

</Directory>

10.2 DirectoryIndex

This directive specifies the file that is to e served when a directory is requested. Multiple files can be listed
in the priority order in which they are to be considered.

DirectoryIndex index.html index.php index.cgi

57

10.3 IndexOptions

The arguments to IndexOptions are as follows

You should demonstrate each of these options so that the students can see what happens Note that for the
ones that are Apache 2.0 specific, you will need to switch over to that configuration file, which will confuse
the students that are following along. Encourage them to try each of these options as well.

• None

IndexOptions None causes a directory listing to be generated as a simple bullet-list of items with links
to the file itself.

• FancyIndexing

This option is necessary for all following ones. That is, turning on FancyIndexing enables the use of
all other index options.

• DescriptionWidth

• NameWidth

Allows you to set the number of characters available for the description of the file or directory. Or the
name of the file or directory. Respectively.

• FoldersFirst

Display the folders first in the listing, as people are used to seeing in various file managers.

• HTMLTable (Apache 2.0)

The default directory index listing is not HTML-complient, because it contains formatting and image
tags inside pre tags. Some people get uptight about stuff like this. Displaying the listing as an HTML
table gets around this, and produces HTML-complient listings. The purpose of the pre tags is to get
the columns to line up, and pre-dates the availablilty of HTML tables. This feature is only available
in Apache 2.0, because nobody has cared to back-port it to 1.3.

• IconHeight, IconWidth

Adds width= and height= tags to the HTML img tag to facilitate rapid page rendering.

• IconsAreLinks

The icons are not usually links to the file. This option makes them such. However, it also put the large
blue border around each icon, which is irritating.

• IgnoreClient

• SuppressColumnSorting

These two options should be considered together, as it is easy to get confused which is which, and why
you need both of them.

IgnoreClient ignores arguments passed in the URL for reordering the entries by column. However, the
links are still at the top of each column to re-order the entries.

SuppressColumnSorting removes the links at the top of each column, but still will honor the arguments
in a URL to reorder, if the user types it in, or if it is linked to explicitly.

So, it really only makes sense to use both of these options, or neither. I’m not sure why anyone would
feel the need to do this, but perhaps a particular ordering is required for some pages.

58

• ScanHTMLTitles

For HTML files, the file is opened and the value of the title tag is placed into the description field for
the directory listing. Note that this is a HUGE performance hit.

• SuppressHTMLPreamble

Useful when using HeaderName. The HTML preamble (the head and body tags, as well as the ”Index
of /foo” text) are ommitted, and you can replace them with the contents of the HeaderName file
instead. Otherwise, any head or body tags that you put in the HeaderName file will probably be
ignored by the client.

• SuppressDescription

• SuppressIcon

• SuppressLastModified

• SuppressSize

Don’t display the column in question

• SuppressRules

• TrackModified

Send a Last-Modified header which reflects the last time a file in this directory was modified. Other-
wise, the Last-Modified header will always be the time of the request, because the resulting document
is being generated fresh each time.

• VersionSort

1.1, 1.2, 1.10 rather than 1.1, 1.10, 1.2

Other directives are:

• AddIcon

• AddIconByType

• AddIconByEncoding

• DefaultIcon

• AddDescription

Note that this directive is a substring match, not a literal file name, or even a file extension. This can
cause confusion if you happen to have multiple files with similar names, and wish to give them different
descriptions. Thus:

AddDescription "The Foo page" foo.html

AddDescription "Other foo stuff" foo

Will not work as desired, whereas:

AddDescription "Other foo stuff" foo

AddDescription "The Foo page" foo.html

will. Get it?

59

10.4 Additional directives

In addition to the IndexOptions, there are a few other directives that allow you to adjust how directory
listings are displayed.

10.4.1 HeaderName

Display a file as a header in the directory listing. If this file is HTML, you can make the listing appear in
the same look as the rest of your site. See SuppressHTMLPreamble.

HeaderName header.html

10.4.2 ReadmeName

Might perhaps be better named FooterName. This displays the contents of a file at the bottom of the
directory listing.

ReadmeName footer.html

10.4.3 IndexIgnore

List files that you don’t want to show up in the directory listing.

IndexIgnore .htaccess *.swp *.tmp

10.5 Searching and sorting

10.5.1 Apache 1.3

• Can sort by Name, Modified, Size, and Description

• http://server/directory?S=D - Sort descending by size

• http://server/directory?M=A - Sort ascending by modified date

10.5.2 Apache 2.0

• Much more full-featured sorting and searching

60

• http://server/directory?P=*.jpg - ’glob’ style patterns

• IndexOrderDefault

IndexOrderDefault Ascending Size

10.6 Security Concerns

• Get to documents that are not linked

• Security by obscurity is not really security at all

61

62

Section 11

Performance Tuning

http://httpd.apache.org/docs/misc/perf-tuning.html

http://httpd.apache.org/docs/programs/logresolve.html

http://httpd.apache.org/docs/programs/ab.html

11.1 Optimization, benchmarking and profiling

Optimize the right thing

People have a tendency to spend an inordinate amount of time optimizing the wrong thing. Like, for example,
optimizing something that takes 5% of the time, ignoring the thing that takes 80% of the time. Or whatever.
Benchmarking something gives you at least a clue as to what is taking all the time. We’re talking here about
client benchmarking, and not really about profiling your actual CGI code, which is more about programming
than about managing Apache, and so is, thankfully, out of scope for this course.

Note that no matter what you do, the network will always be the bottleneck

Of course, that’s not really true, but it’s a good myth to keep in mind. If most of your users are dialup
users, or home users in general, this may be the case. If most of your users are business users, this may not
be the case, but the network will still be a very big portion of any user’s performance experience.

11.2 ab

ApacheBench. Benchmarking for web content.

/usr/local/apache/bin/ab -n 1000 http://localhost/index.html

63

Make sure that everyone runs this, ponders the results, compares it to other students’ output, and so on.
Make sure that they look at all the fields, and know what they mean. This may seem like a silly exercise at
the time, but most of this stuff will come in useful throughout the rest of this section, and the rest of the
course.

-k flag for KeepAlive.

Can run this against other servers as well as your own. Try not to do this without the permission of the
server administrator.

Some sites will detect this as an attack, and block your address. That would be annoying.

11.3 Perl

use Benchmark;

use LWP::Simple;

timethese($count, {
’Slow’ => ’$content = get("http://server/slow.cgi");’,

’Fast’ => ’$content = get("http://server/fast.cgi")’,

’EvenFaster’ => ’$content = get("http://server/mod perl handler")’,

});

• Gives comparative times for the two documents

• Note that this includes network time

• And, of course, this can be used to time any pieces of code that you are interested in comparing

• It will be interesting to come back to this code after we have covered mod perl

11.4 Optimizing hardware

• More RAM

• If you have to swap, all bets are off. When in doubt, buy more RAM.

• Fast disk access. RAID is good.

• Faster CPU

• Pretty much the obvious stuff. Apache does not require any custom hardware.

64

11.5 Tuning configuration settings

11.5.1 HostnameLookups

HostNameLookups Off

• DNS lookups take a long time

• Used to be on by default

• Now is off by default. Leave it that way

• /usr/local/apache/bin/logresolve < /usr/local/apache/logs/access log > report

• Do log resolution and reporting somewhere other than on your production web server

11.5.2 Symbolic links

• Allow symlinks to improve performance

• FollowSymlinks requires that every file path get checked for symlinks. Not just on the file itself but on
every directory leading up to it.

• SymLinksIfOwnerMatch requires not only this, but that we check ownership of every file along the
way.

• For best performance, always use FollowSymLinks, and never use SymlinksIfOwnerMatch

11.5.3 .htaccess files

• Very very bad

• Must check for the existence and contents of a particular file for every directory in the path to the
target.

• AllowOverride None

• Put directives in the main server configuration file

11.5.4 Negotiation

• It is slow. Turn it off if you don’t need it

• On an increasingly global web, more and more sites will need this.

• Try running ab against index.html vs index.html.en

65

11.5.5 Caching and proxying

Apache ships with a caching proxy server which you can configure to cache incoming or outgoing requests.

mod proxy

ProxyRequests On

CacheRoot /var/httpd/cache

Squid

http://www.squid-cache.org

Benefits of a caching proxy

• Faster retrieval of remote content

If you put your organization behind a caching proxy server, and have your users proxy all of their
content through it, then commonly-fetched content will be cached, so that they will access it across
the LAN, rather than across the Internet.

• Faster serving of content, sometimes

Using mod proxy and mod rewrite, you can have incoming requests farmed out to a list of servers, and
have this content served through the proxy server.

http://apache13/mod/mod rewrite.html#RewriteMap

Disadvantages

• Don’t always have fresh content

• Don’t always get the negotiated document that you really wanted

• May get incorrect data from cached CGI program output.

Note: These last two cases should actually never happen. With CacheNegotiatedDocs Off and properly
configured CGI programs, these resources should always specify that they don’t want to be cached.

66

11.5.6 mod mmap static

Map static files into memory

Replaced in 2.0 by mod file cache

MMapFile /usr/local/apache/htdocs/index.html

11.6 Process Creation

• MinSpareServers

• MaxSpareServers

• StartServers

When additional servers are needed, they are started on the following schedule. One is launched in the first
second, 2 in the second, 4 in the third, and so on exponentially until 32 are being launched each second.
This rate is maintained until the MinSpareServers requirement is again satisfied.

11.6.1 MaxRequestsPerChild

• 0 means never kill the child

• On Solaris, there are Apache leaks. Set this to something non-zero

• On Windows, never set this to anything other than 0 * KeepAlive * KeepAliveTimeout

• Setting this too high, (or too low) causes a loss of the performance benefit of KeepAlive

11.7 KeepAlive

• KeepAlive On

• KeepAliveTimeout

11.8 CGI/Other dynamic content

• The greatest bottleneck I have had has been bad code.

• Poor algorithms can cause code to work well in low-stress testing environments, but perform very
poorly when faced with large amounts of real data.

• Test with realistic data.

• If the user hits ”reload” before a document loads the first time, you have just doubled the load.

• Split dynamic content over several steps if this improves performance

67

68

Section 12

CGI programming

http://httpd.apache.org/docs/howto/cgi.html

http://httpd.apache.org/docs/mod/mod cgi.html

Today you are going to write a CGI program and get it working. This CGI program will parse form contents
and put a record in a database. (Note, if DBI is not available, we’ll put this in a text file or similar.)

12.1 Introduction - The CGI

• Provides an interface for arbitrary programs to provide content for web pages

• CGI spec: http://hoohoo.ncsa.uiuc.edu/cgi/interface.html

• CGI 2: http://cgi-spec.golux.com/

• Advantages of CGI

– Easy to write

– Easy to maintain

– Readily available examples for download

• Disadvantages

– Slow startup → slow runtime

– No maintenance of state

– Most of the ’readily available examples’ are very badly written

• Alternatives to CGI

– mod perl

– PHP

– FastCGI

– ASP

69

– JSP

– etc, etc, etc

• Each addresses the above problems in different ways, but with many of the same general concepts:

– Persistent database connections

– In-memory interpreter

– Direct interface to the web server API

12.2 Apache configuration

• Options +ExecCGI

• AddHandler cgi-script

– Adds cgi execution to particular files

• SetHandler cgi-script

– Adds cgi execution to all files in the range

• ScriptAlias

– This is the preferred method

– Keep track of your CGI programs

– Don’t have to expose the mechanisms (.cgi) – See Jakob Nielsen

12.3 How a CGI program works

• Input

Input comes in from the browser in several different formats

– Environment variables:

SERVER_SOFTWARE

SERVER_NAME

GATEWAY_INTERFACE

SERVER_PROTOCOL

SERVER_PORT

REQUEST_METHOD

PATH_INFO

PATH_TRANSLATED

SCRIPT_NAME

QUERY_STRING

REMOTE_ADDR

REMOTE_HOST

AUTH_TYPE

REMOTE_USER

REMOTE_IDENT

70

CONTENT_TYPE

CONTENT_LENGTH

HTTP_USER_AGENT

HTTP_ACCEPT

– GET requests

Arguments following the end of the URL are available in the variables QUERY STRING and PATH INFO

http://server/cgi-bin/script.cgi/path/info?foo=bar&one=two

http://server/cgi-bin/test.cgi/path/info?var=value

PATH_INFO is "/path/info"

QUERY_STRING is "var=value"

PATH INFO is /path/info

QUERY STRING is foo=bar&one=two

– Form input

– POST requests

Form content has a similar format to GET information. It comes in over STDIN, and is formatted
as variable=value&variable=value

– Decoding form data

Most programming languages have some library available to decode form contents. We’ll be using
primarily Perl for the purpose of this tutorial, but other languages can be used.

– Output

– Content-type header

– Content

• Example programs

Simple CGI programs in Perl

Example 1

#!/usr/bin/perl

print "Content-type: text/html\n\n";
print "Hello world";

Example 2

71

#!/usr/bin/perl

use CGI;

my $cgi = new CGI;

$form = $cgi->Vars;

print "Content-type: text/html\n\n";
print "<h2>Form values ...</h2>";

foreach my $key (keys %$form) {
print "$key => $form->{$key}
";

}

The above example needs an HTML form, something like:

<form action="/cgi-bin/example3.cgi" method="POST">

One <input name="variableone" value="default">

Password <input type="password" name="pass">

<input type="hidden" name="x" value="y">

Checkbox <input type="checkbox" name="yesno">

Input area <textarea name="textarea" rows="5" cols="40"></textarea>

<input type="submit" value="Submit Form">

</form>

Example in sh

#!/bin/sh

echo Content-type: text/html

echo

echo Hello, World

Example in C

#include <stdio.h>

int main()

printf("Content-type: text/html\n\n");
printf("Hello, world!\n");
return 0;

72

12.4 Common problems

• Permissions

• Syntax errors

• Invalid headers

• Asking for help in a newsgroup

73

74

Section 13

SSI

http://httpd.apache.org/docs/howto/ssi.html

http://httpd.apache.org/docs/mod/mod include.html

Directives written into the HTML pages, which are processed by the server as the page is being served.

• Add dynamic content to an existing HTML page

• Include external text files (headers, footers)

13.1 Configuration for SSI

• Options +Includes

• Options +IncludesNOEXEC

I

f you have AllowOverride Options enabled (or AllowOverride All, which includes
Options) then people can put these directives in their .htaccess files, overriding your
security precautions.

• Enabling by file extension

AddType text/html .shtml

AddHandler server-parsed .shtml

This causes all files with a .shtml extension to be parsed for SSI directives.

The disadvantage of this approach is that you have to

– Expose the mechanism (ie, everyone knows how you are generating the effect)

75

– You have the change the name of all the files, and break all the links to those files.

You could also set all .html files to be parsed for SSI directives:

AddHandler server-parsed .html

• Additional overhead on EVERY file

• Parsing files that have no directives in them

Fortunately, there is an alternative.

13.2 XBitHack

The XBitHack directive tells Apache to parse files for SSI directives if they have the execute bit set.

XBitHack On

• on - parse files with u+x

• off - don’t parse files with u+x

• full - g+x means send the last-modified date on the file itself, rather than the current time

Several advantages

• Don’t have to change file names

• Don’t expose the mechanism

• Guessable URLs

• Not supported on Windows - there’s no x-bit

13.3 mod include configuration directives

• SSIStartTag

• SSIEndTag

• SSIErrorMsg

• SSITimeFormat

• SSIUndefinedEcho

76

SSIStartTag "<%"

SSIEndTag "%>"

13.4 SSI directives

Syntax: <!--#element attribute=value attribute=value ... -->

Elements are ...

• config

• echo

• exec

• fsize

• flastmod

• include

• printenv

13.4.1 config

<!--#config errmsg="[It’s broken]" -->

<!--#config sizefmt="bytes" --> (or abbrev)

13.4.2 timefmt

This supports the same time formats as strftime(). (man strftime for a complete listing.)

<!--#config timefmt="%B %e, %Y" -->

77

13.4.3 echo

13.4.4 exec

• cgi

• cmd

13.4.5 fsize

• file (full path)

• virtual (URL path)

13.4.6 flastmod

Displays the last modified time of a file. This is different from the LAST MODIFIED variable in that you can
refer to a different file than the one currently being viewed.

<!--#flastmod virtual="/index.html" -->

<!--#flastmod file="otherdir/index.html" -->

You can only display this information file files that are accessible via the web site in some way. The file

argument is relative to the current directory, and cannot start with a leading slash, or contain .. in the
path.

The output of this directive is subject to the #config timefmt directive.

13.4.7 include

Include a file, or the output of a CGI program.

<!--#include virtual="/cgi-bin/counter.pl" -->

With include you can provide additional arguments to the CGI program, which you cannot do with exec:

78

<!--#include virtual="/cgi-bin/counter.pl?page=foo.html" -->

Most commonly, include is used to include a file, such as a header or footer. By using this technique, a
footer can be maintained at one location, and included into any number of pages. Then, when the content
of the footer is updated, it is immediately changed across the entire web site.

<!--#include virtual="/includes/footer.html" -->

13.4.8 printenv

<!--#printenv -->

13.5 Variables and flow control

<!--#if expr="$Mac && $InternetExplorer" -->

Apologetic text goes here

<!--#else -->

Cool JavaScript code goes here

<!--#endif -->

Also available is the elif keyword.

13.6 Security

• exec considered harmful

• Use ’include’ rather than ’exec’ for CGI programs

– Removes security concerns with exec

– Able to pass QUERY STRING arguments

79

80

Section 14

Handlers and Filters

http://httpd.apache.org/docs/handler.html

http://httpd.apache.org/docs-2.0/filter.html

http://httpd.apache.org/docs-2.0/mod/mod actions.html

14.1 Handlers

Handlers are functions in Apache modules which produce dynamic content in response to a URL request.
They are usually configured via a <Location> directive, or can be mapped to a particular file type.

14.1.1 Configuration directives

AddHandler

Maps a handler to a particular file extension. That is, associates a particular action or process to a given
file type.

AddHandler cgi-script cgi pl py

The above directive tells Apache to consider any program with a cgi, pl, or py extension to be a CGI
program, execute it, and pass the resulting output back to the client.

This handler is provided by the mod cgi module.

81

SetHandler

Much like the AddHandler directive, but specifies that all files (or URLs) in the given scope (usually a
Location, Files, or Directory section is to be handled by the specified handler.

<Location /server-status>

SetHandler server-status

</Location>

The server-status handler is provided by the module mod status.

RemoveHandler

Removes the action of a handler from a specified file extension.

RemoveHandler .html

Action and Script

Provides for the creation of custom handlers, by mapping a file type to a CGI URL.

There are two ways that this can be handled.

You can map an action to a particular type (MIME type) of file using just the Action directive:

Action image/gif /cgi-bin/watermark.cgi

Or, you can map a file extension to an Action in two steps:

AddHandler my-handler .gif

Action my-handler /cgi-bin/watermark.cgi

These two techniques are essentially equivalent. The latter creates a named handler, and then defines that
handler to be the specified CGI program.

The Script directive is a little bit different, and seldom used. Script specifies that a particular script is to
be used every time a particular HTTP method is used in a request.

82

Script POST /cgi-bin/post.cgi

14.1.2 Standard handlers

The following are the standard handlers - that is, those handlers that are defined by modules that come
standard with Apache.

default-handler

Defined by the Apache core (rather than by an extension module) this is the handler that deals with requests
for files. This is the default manner of dealing with a URL request if there is nothing else special about it.

This is the handler that was in use in the URL mapping section yesterday.

send-as-is

Defined by mod asis, the send-as-is handler sends a file without prefacing it with any headers. It is
assumed that the file itself will contain the headers as part of the content of the file.

Status: 301 Now where did I leave that URL

Location: http://xyz.abc.com/foo/bar.html

Content-type: text/html

<HTML>

<HEAD>

<TITLE>Lame excuses’R’us</TITLE>

</HEAD>

<BODY>

<H1>Fred’s exceptionally wonderful page has moved to

Joe’s site.

</H1>

</BODY>

</HTML>

The send-as-is handler is enabled using the AddHandler directive:

AddHandler send-as-is .asis

It is customary to name these pages something.asis, however, in the case of the above example, when

83

advertising a page that has moved, you may want to use a <Files> section to map the send-as-is handler
to just a particular file.

cgi-script

Provided by mod cgi, the cgi-script handler executes a program and returns the output of it to the client.

AddHandler cgi-script .cgi .pl

Use of this handler is permitted by use of the Options +ExecCGI directive.

imap-file

Sometimes a little hard to explain because it is completely archaic. There used to be server-side image maps
(circa 1996) before client-side image maps came into wide-spread use.

This handler is provided by mod imap, and you should consult the documentation for this module if you are
interested in more detail. You are unlikely to ever use this handler.

server-info

Provided by mod info, this handler provides detailed information about the server configuration and what
modules are loaded.

Configured with a <Location> section:

<Location /server-info>

SetHandler server-info

</Location>

server-status

Provided by mod status, this handler provides a snapshot of server activity, displaying what each child
process is doing.

See also the ExtendedStatus directive.

You can also access this information with apachectl status

84

<Location /server-status>

SetHandler server-status

</Location>

See http://httpd.apache.org/server-status/ for a good example of this in action.

server-parsed

Provided by mod includes, this handler parses HTML pages looking for SSI (Server-Side Includes) directives.
If found, it processes these directives and replaces them with the result of the action described in the directive.

See section on SSI for more information.

Use of this handler is permitted by using the Includes argument to Options.

type-map

Provided by mod negotiation, this handler indicates that a particular file is a type map file, describing the
variants of a particular document. See Section 9 for more details on content negotiation.

85

AddHandler type-map .var

14.1.3 Custom handlers

Custom handlers can be created using the Action and Script directives described above.

For example, using the following configuration:

Action text/html /cgi-bin/footer.pl

you can add a footer to the bottom of every HTML page, using a CGI program that looks like:

#!/usr/bin/perl

print "Content-type: text/html\n\n";

my $file = $ENV{PATH_TRANSLATED};

open FILE, "<$file";

print while <FILE>;

close FILE;

print qq~

FOOTER GOES HERE

~;

14.2 Filters

Filters are a major enhancement that comes with Apache 2.0, and one of the things that has been discussed
since the very early days of talking about what would be in 2.0.

Filters give you the ability to chain actions on input or output. The classic example of this is SSI and CGI.
For years, a frequently asked question on the mailing list and news groups has been whether you could put
SSI directives in the output of a CGI program, and then have them processed correctly before the content
was served to the client. The answer to this question is no, because you have only one shot at producing
dynamic content. You decide which module will handle a particular request, and that’s it. You can’t have
it both ways.

Filter chains change the answer to no. You can specify that particular content is passed through one or more
additional filters on its way out to the client. The Includes filter happens to be an available filter. You can

86

specify that your CGI-generated content will pass through the Includes filter on the way out the wire to
the client, and those directives will be correctly processed and the desired content filled in.

Options +ExecCGI

AddHandler cgi-script cgi

AddOutPutFilter INCLUDES cgi

Alternately, you can specify that content be processed by more than one filter. In the example below, files
with a .shtml extension are processed by the INCLUDES filter, and then compressed with the DEFLATE filter:

AddOutputFilter INCLUDES;DEFLATE shtml

14.2.1 Chaining filters - CGI + SSI

With Apache 1.3, people frequently ask how they can have their CGI programs output SSI directives, and
then have those SSI directives parsed by mod includes. In 1.3, the answer is that you can’t do that. In 2.0,
this is now possble.

In your cgi-bin directory section the Apache 2.0 httpd.conf file, add the following:

Options ExecCGI Includes

AddOutputFilter INCLUDES .cgi

Then, in the cgi-bin directory, place the following script, calling it ssi.cgi

#!/usr/bin/perl

print "Content-type: text/plain\n\n";
print "SSI: <pre><!--#printenv --></pre>";

Now, upon accessing http://localhost:90/cgi-bin/ssi.cgi you should see the complete output of an
SSI printenv directive.

14.2.2 mod deflate

mod deflate compresses content as it is sent out to the client, in much the same way that mod gzip does
for Apache 1.3.

87

<Directory "/your-server-root/manual">

AddOutputFilterByType DEFLATE text/html

</Directory>

Since some browsers don’t correctly handle gzipped non-html content, it is recommended that you only
compress html content. The directive above does that.

If you wish to create a log file a la mod gzip, you’ll also need something like the following:

DeflateFilterNote ratio

LogFormat ’"%r" %b (%{ratio}n) "%{User-agent}i"’ deflate

CustomLog logs/deflate log deflate

88

Section 15

mod perl

15.1 Overview - What is mod perl?

mod perl embeds a Perl interpter into the Apache process, for two purposes:

• Make calls directly to the Apache API to write Apache modules in Perl

• Improve performance of Perl CGI programs upwards of 300%

15.2 Installation

Unpack mod perl source, change into the mod perl directory, and then ...

perl Makefile.PL APACHE PREFIX=/usr/local/apache

APACHE SRC=../apache-1.3.20/src DO HTTPD=1 USE APACI=1

EVERYTHING=1

APACI ARGS=’--enable-module=rewrite,--enable-module=speling’

make && make install

15.3 mod perl installation caveats

• Don’t install as dso

• php

You can install it in conjunction with PHP if you are really careful, but there are frequent problems with
this interaction. In particular, they seem to use conflicting versions of the mysql libraries, and this can cause
conflicts if/when they both attempt to connect to a mysql database.

89

15.4 Configuration

15.4.1 PerlRequire

Perl commands that you want to run at startup. Preload modules into shared memory. Set global variables.

PerlRequire /usr/local/apache/conf/preload.pl

And /usr/local/apache/conf/preload.pl would then contain:

use Apache::DBI;

use DBI;

use CGI qw(:Standard);

use MyCompany::Utils;

use lib ’/path/to/my/modules’;

1;

15.5 Connecting to your database

Apache::DBI->connect on init($database, $username, $password);

15.6 CGI under mod perl

A major use of mod perl is as a CGI speed enhancer. This can provide 10 to 20 times speed improvement,
in my experience.

This is done one of two ways.

15.6.1 Apache::PerlRun

If you have cgi code that works and you don’t want to spend much time ensuring that it is safe to run
under mod perl, you can just use Apache::PerlRun to run these programs and gain some of the benefits of
mod perl.

90

Alias /cgi-perl/ /usr/local/apache/cgi-bin/

<Location /cgi-perl>

SetHandler perl-script

PerlHandler Apache::PerlRun

Options ExecCGI

PerlSendHeader on

</Location>

Maps the URL /cgi-perl to your cgi-bin directory, and arranges for mod perl to execute these cgi programs
for you, rather than mod cgi. You can now access your cgi programs with a new URL, and get an immediate
speed improvement.

Rather than using the URL

http://servername/cgi-bin/test.cgi

you can now use the URL

http://servername/cgi-perl/test.cgi

For the purpose of this exercise, we will use the following CGI program, and call it test.cgi. Please type
in this program and place it in /usr/local/apache/cgi-bin:

#!/usr/bin/perl

print "Content-type: text/html\n\n";
print "Hello";

You now should run the following command:

/usr/local/apache/bin/ab -n 1000 -c 5 http://localhost/cgi-bin/test.cgi

After noting the numbers that you get, then run the following:

/usr/local/apache/bin/ab -n 1000 -c 5 http://localhost/cgi-perl/test.cgi

91

Wow.

15.6.2 Apache::Registry

If you are certain that your program is well-written, uses strict and warnings, and does not abuse global
varibles, try it under Apache::Registry

Add the following configuration:

Alias /perl/ /usr/local/apache/cgi-bin/

<Location /perl>

SetHandler perl-script

PerlHandler Apache::Registry

Options +ExecCGI

PerlSendHeader on

</Location>

Now, run:

/usr/local/apache/bin/ab -n 1000 -c 5 http://localhost/perl/test.cgi

Be impressed.

15.7 Apache handlers with mod perl

If you really want to take advantage of the power of mod perl, you should write Apache handlers using
mod perl.

15.7.1 Installing a mod perl handler from CPAN

There are a plethora of existing mod perl handlers available for download from CPAN (the Comprehensive
Perl Archive Network - http://www.cpan.org/). We’ll install one, and talk about another one.

Install Apache::Perldoc using:

perl -MCPAN -e shell

cpan> install Apache::Perldoc

92

Configure the module using:

<Location /perldoc>

SetHandler perl-script

PerlHandler Apache::Perldoc

</Location>

And then use the module by going to the URL

http://localhost/perldoc/Apache::Perldoc

Generates full documentation for any Perl module that you have installed.

Apache::Album allows you to put image files on your server, and automatically generate image galleries with
thumbnail images:

http://buglet.rcbowen.com/photos/

15.8 Writing a mod perl handler

A mod perl handler is a Perl module with a single method called handler. This method should take a single
argument - the Apache::Request object, traditionally called $r, and should emit content to get displayed
in the browser, using the appropriate methods from the Apache API

15.8.1 Example mod perl handlers

package Apache::HandlerTest;

sub handler {
my $r = shift; # Apache session object

$r->content_type(’text/html’);

$r->send_http_header;

$r->print("Hello, world.");

}

93

15.8.2 Installing the example mod perl handler

Because Perl looks certain places for Perl modules, this module needs to be placed in the Perl library
directory. There are a variety of ways to do this, and for the purpose of this course, we will just copy the
file into the Perl library directory manually.

The above file is to be called HandlerTest.pm, and is to be placed in an Apache subdirectory of the Perl lib
directory.

For example, if the Perl lib directory is
/usr/lib/perl5/site perl/5.6.0

then the file should be placed at
/usr/lib/perl5/site perl/5.6.0/Apache/HandlerTest.pm

To find a listing of what the Perl lib directories are on your particular machine, type:

perl -le ’print join "\n",@INC;’

If you don’t know much about Perl, ask the instructor for assitance at this point.

15.8.3 Configuring the mod perl handler

The handler is configured by adding a <Location> section in your configuration:

<Location /handlertest>

SetHandler perl-script

PerlHandler Apache::HandlerTest

</Location>

15.9 Common problems

15.9.1 Don’t exit

Calling the Perl command exit() causes the Perl interpreter to exit, rendering that Apache child useless.
Don’t do that.

15.9.2 Restart the server

When you restart, you actually have to stop and start the server, as your code is often cached in the parent
process, and so restarting the child processes does not cut it.

94

See also:

• PerlFreshRestart

• PerlInitHandler Apache::StatINC

15.9.3 Global values

Global values in mod perl are really global. Meaning that not only can variables be seen out of scope, but
they can also be seen in other child processes (maybe) and in other client accesses. This can really ruin your
whole day.

15.10 Other phases

All of the mod perl handlers that we have looked at so far are content handlers. That is, they return content,
much the same way a CGI program would.

mod perl can handle any phase of the Apache lifecycle, including access control, authentication, logging, or
configuration. In this section we’ll look at a few examples of this.

15.10.1 PerlAccessHandler

A PerlAccessHandler will allow you to do access control based on arbitrary criteria, like the phase of the
moon. Acme::Apache::Werewolf1 is a module that does just that.

<Directory /fullmoon>

PerlAccessHandler Acme::Apache::Werewolf

PerlSetVar MoonLength 4

</Directory>

The lunar cycle is 28 days, with the full moon falling right in the middle. MoonLength allows you to specify
how many days you want to consider to be the full moon. This gives you an safety margin around the full
moon.

The code itself is extremely simple:

1The Acme namespace of Perl modules indicates a module that is functional, but was written as a joke.

95

package Acme::Apache::Werewolf;

use strict;

use Astro::MoonPhase;

use Apache::Constants qw(:common);

use vars qw($VERSION);

$VERSION = ’1.00’;

sub handler {
my $r = shift;

my $moonlength = $r->dir config(’MoonLength’);

warn "Moon length is $moonlength";

my ($MoonPhase,

$MoonIllum,

$MoonAge,

$MoonDist,

$MoonAng,

$SunDist,

$SunAng) = phase(time);

return FORBIDDEN unless abs(14 - $MoonAge) > ($moonlength/2);

return OK;

}

All the hard work in this module is done by Astro::MoonPhase, which calculates the phase that the moon
is in currently. Given the MoonAge value, the module returns FORBIDDEN if this value is inside the window
defined by the value that you provided for MoonLength.

15.10.2 PerlLogHandler

A PerlLogHandler handler will let you handle the logging phase from within Perl.

15.10.3 Perl configuration sections

15.11 More information

http://perl.apache.org/

mod perl Developer’s Cookbook (Geoff Young)

Practical mod perl (Stas Bekman and Eric Cholet)

96

Section 16

Logging

Every request to your server results in an entry in a log file. If something goes wrong, it will also result
in an entry in the error log file. This means that you always have a “paper trail” for everything that goes
on on your server, so that you can look back and find out what happened. This is primarily useful for two
purposes - troubleshooting, and statistics gathering.

In this chapter, we look at the standard log files, as well as at the custom log files which you can create to
fit non-standard needs.

16.1 Standard log files

/usr/local/apache/logs/access log

First we look at a standard default access log, in Common log format (CLF). While many third-party
bundlings of Apache ship with the Combined log format instead, this is still the most common log format,
and the Combined is just an extension of it.

16.1.1 access log

Format ...

216.35.116.91 - - [19/Aug/2000:14:47:37 -0400] "GET / HTTP/1.0" 200 654

• 216.35.116.91 Client address (See HostNameLookups)

• - (placeholder) Ident (always blank)

• - (placeholder) Username

• [19/Aug/2000:14:47:37 -0400] - Date/time

97

• "GET / HTTP/1.0" Request

– Method type (GET, POST, HEAD)

– URL requested

– PROTOCOL (HTTP + version number)

• 200 Status code

• 654 Bytes transferred

• Client address - This is the IP address of the client connecting to your server. There are a number of
comments that should be made about this.

– It is the IP address, not the host name. If you turn on HostNameLookups, you’ll get the host name,
rather than the IP address. Don’t do this, for reasons that will be discussed in the performance
section.

– Some folks will get rather irate that you have this information. Of course, this is silly, as the
information is probably worthless. However, there are a variety of good reasons to keep your
log files highly confidential. Releasing this information (this IP address visited this page at this
time) can cause embarassment, or worse. The log files are useful as statistical information, but
individual entries should not be public information.

– Note that many hosts may be behind one address, and, conversely, one host can show up, at
different times, behind many IP addresses.

• Ident - This field is here for historical reasons. Long long ago (Netscape 0.9) this field would contain
the email address of the person visiting your web site. The browser happily provided this information
along with every request. As you can imagine, the marketing people got hold of this information, and
started sending UCE to those addresses. Browsers quickly stopped providing this information, and
this field has been blank ever since.

There is a patch available at http://mm.apache.or.jp/pipermail/apache00-01/2000-July/001181.html
which adds a directive (Anonymous Email As Ident) which causes the “password” field supplied to be
logged in the Ident field. This makes a lot of sense, actually, and we’ll come back to that when we get
to the Auth chapter.

• Username - Set only if the resource in question required authentication, and, in that case, will contain
the username of the authenticated user.

• Date/Time - The date and time that the request was made. Granularity is 1 second, and, no, there’s
no way to make that finer.

• Request - Contains the full request as received from the client. This should contain three fields, such
as: ”GET / HTTP/1.0”. The first field - the method - can be one of a dozen or so methods such as
GET, POST, HEAD, CONNECT, PROPFIND, and so on. The next field is the requested URL. For
a local URL, this will be the path - that is, no hostname. For proxied URLs, it will be the full URL
of the remote resource. Finally we have the protocol and version, such as HTTP/1.0 or HTTP/1.1.

• Status Codes:

100 Informational
200 OK
300 Redirect
400 User error
500 Server error

• Bytes transferred

98

16.2 Location and format of the log file

CustomLog /usr/local/apache/logs/access log common

Means that the log file is to be located at /usr/local/apache/logs/access log and is to be in the format
’common’. This format is defined by the LogFormat directive:

LogFormat "%h %l %u %t \"%r\" %>s %b" common

See http://httpd.apache.org/docs-2.0/mod/mod log config.html#formats for the full listing of op-
tions.

Other log formats:

• Common Log Format (CLF) "%h %l %u %t \"%r\" %>s %b"

• Common Log Format with Virtual Host

"%v %h %l %u %t \"%r\" %>s %b"

• NCSA extended/combined log format

"%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-agent}i\""

• Referer log format "%{Referer}i -> %U"

• Agent (Browser) log format "%{User-agent}i"

The CustomLog directive can then be used to create a new log file using the format that you have created.

You can have as many log files as you like.

16.3 mod log io

Logs the total bytes transferred, including headers. Adding mod log io gives you two new variables to use
in your log formats: %I and %O

99

16.4 Exercises

1. Construct a log file containing the exact time taken to serve the request, in microseconds.

2. Construct a log file that shows which virtual host the request was made to.

3. Add mod log io to your server, using apxs, and construct a log file containing the exact number of
bytes transferred.

16.4.1 Error logs

Location of the error log

ErrorLog logs/error log

Note that path is Relative to ServerRoot

16.4.2 LogLevel

• emerg

• alert

• crit

• error

• warn

• notice

• info

• debug

16.5 Typical errors

• Document error

[Fri Aug 18 22:36:26 2000] [error] [client 192.168.1.6] File does not

exist: /usr/local/apache/bugletdocs/Img/south-korea.gif

As with access log, error message is in several distinct parts

100

• Authentication error

[Tue Apr 11 22:13:21 2000] [error] [client 192.168.1.3] user rbowen

authentication failure for "/cgi-bin/hirecareers/company.cgi":

password mismatch

• CGI errors

Wed Jun 14 16:16:37 2000] [error] [client 192.168.1.3] Premature

end of script headers:

/usr/local/apache/cgi-bin/TestProg/announcement.cgi

Global symbol "$rv" requires explicit package name at

/usr/local/apache/cgi-bin/TestProg/announcement.cgi line 81.

Global symbol "%details" requires explicit package name at

/usr/local/apache/cgi-bin/TestProg/announcement.cgi line 84.

Global symbol "$Config" requires explicit package name at

/usr/local/apache/cgi-bin/TestProg/announcement.cgi line 133.

Execution of /usr/local/apache/cgi-bin/TestProg/announcement.cgi

aborted due to compilation errors.

16.5.1 Things to remember!

• The error log is your friend

• tail -f /usr/local/apache/logs/error_log

• Watch the log while you are working on stuff.

16.6 Logfile reporting

16.6.1 What your log file tells you

• Address of remote machine

• Time of visit

• Resource requested

• What’s broken

16.6.2 What your log file does not tell you

• Who is visiting

– Proxies

– Caches

101

• Precisely how many visitors

• Name, address, credit card number

• If you want to know something, you have to ask

16.6.3 Log file parsing

• Webalizer (www.mrunix.net/webalizer)

• Analog

• WebTrends

• WWWStat

• Wusage

• Apache::ParseLog Perl module

16.7 Logging to a process

CustomLog |/usr/bin/apachelog common

Logs to the program /usr/bin/apachelog, rather than to a file, where apachelog looks like ...

#!/usr/bin/perl

while (my $log = <STDIN>) {
DoSomethingUseful($log);

}

• Buffering

• Performance

• http://modules.apache.org/ for modules that already do this

16.8 Logging to syslog

CustomLog syslog combined

CustomLog syslog:local1 common

102

16.9 Rotating log files

16.9.1 Logfile::Rotate

Logfile::Rotate is a Perl module. It is on the CD. Or you can get it from
http://www.cpan.org/modules/by-module/Logfile/

Unpack it somewhere, run the following:

perl Makefile.PL

make

make test

make install

Or, to install the module from the CPAN shell:

perl -MCPAN -e shell

cpan> install Logfile::Rotate

cpan> quit

Then put the following code into a file called rotatelogs.pl

#!/usr/bin/perl

use Logfile::Rotate;

$logfile = new Logfile::Rotate(

File => ’/usr/local/apache/logs/access_log’,

Count => 5,

Gzip => ’/bin/gzip’,

Post => sub {
‘/usr/local/apache/bin/apachectl restart‘;

}
);

$logfile->rotate();

Run the file a few times and see what happens to your log files. You’ll want to run this program every month
(or week, or whatever) via cron or other scheduler.

103

16.9.2 rotatelogs

CustomLog "|/usr/local/apache/bin/rotatelogs /some/where 86400" common

Implemented as a piped log file, which rotates your logs automatically every day.

The /some/where is where you want it to put the old log files each day. Specifically, it will create files called
/some/shere.XXXXXXX, where XXXXXXX is the time in Unix time - that is, the number of seconds since Jan
1, 1970. This number can be converted back into human-readable time by the command:

perl -le ’print scalar localtime($time);’

where $time is the number appended to the end of the file name.

The 86400 is the number of seconds in a day, and means that the log rotation will happen once a day. You
may want to set this at 300 seconds (ever 5 minutes) to see what this does.

NEED TO ADD 2.0 STUFF HERE

16.9.3 logresolve

cp ../logs/access_log ./

./logresolve -s stats < access_log > resolved.log

Resolves IP addresses, generates simple statistics.

16.10 Logging for multiple virtual hosts

• Each vhost should have its own log file

• Alternately, if you have only one log file, make sure you use the extended (combined) log file format
which contains the vhost name:

"%v %h %l %u %t \"%r\" %>s %b"

Note that this is the canonical name for the vhost, not necessarily the name with which the host was
accessed. ie, could be www.apacheadmin.com rather than apacheadmin.com even if that’s what was
actually used.

104

Section 17

Authentication, Authorization, Access
Control

17.1 Definitions

• Authentication

• Authorization

• Access Control

17.2 Basic Authentication

• Provided by mod auth

• 401 Authentication Required

• Browser supplies credentials if it has them

• Otherwise provides username/password dialog for user

• Credentials passed with every request

• Auth name/realm - used by the browser to cache login

• Password passed plaintext, with every request

17.3 Configuration

• Create a password file

– htpasswd -c filename username

– htpasswd filename username

105

• Set configuration to use this file

– AuthType Basic

– AuthName

– AuthUserFile

– Require user username

– Require valid user

– Use a different password than for your network login

• Optionally, create a group

– group: user1 user2 user3

– 8K limit

– AuthGroupFile

– Require group groupname

<Directory /usr/local/apache/htdocs/private>

AuthType Basic

AuthName "Top Sekrit"

AuthUserFile /usr/local/apache/passwd/passwords

Require user rbowen sungo

</Directory>

Or

<Directory /usr/local/apache/htdocs/private>

AuthType Basic

AuthName "Top Sekrit"

AuthUserFile /usr/local/apache/passwd/passwords

AuthGroupFile /usr/local/apache/passwords/groups

Require group sekrit

</Directory>

/usr/local/apache/passwords/groups looks like:

sekrit: rbowen sungo dpitts

17.4 FAQ

• How do I log out?

• How do I change what the password box looks like?

• How do I make my login persist across browser sessions?

• Why does it sometimes ask for my password twice?

106

17.5 Basic Auth Caveats

• Basic auth is not secure

• Username/password passed in the clear

• Content passed in the clear

• Cosmetic security only

17.6 Digest Auth

• Same as basic, except ...

• Username, password, MD5 hashed, and passed.

• Password not stored anywhere in the clear

• Content still passed in the clear

• Not supported by all browsers

Instead of htpasswd ...

htdigest -c /usr/local/apache/password/digest realm username

17.7 Configuration for Digest auth

AuthType Digest

AuthName "Private Area"

AuthDigestFile /usr/local/apache/passwords/digest

Require user drbacchus dorfl

Group file is identical to that used with Basic, if you want one. Use AuthDigestGroupFile with the same
format.

17.8 Authentication against other things

• mod auth db

• mod auth mysql

• mod auth ldap

107

• mod auth nds (Netware Directory Services)

• mod auth smb (SMB - NT domain authentication)

17.8.1 mod auth db

• Creating a password file

dbmmanage passwords.dat adduser montressor

dbmmanage groups.dat add rbowen one,two,three

dbmmanage --help for full details, or man dbmmanage

This is still Basic authentication, with all the concerns pertaining thereto. It’s just using a different
file for its information.

AuthName "Members Only"

AuthType Basic

AuthDBUserFile /usr/local/apache/passwd/passwords.dat

AuthDBGroupFile /usr/local/apache/passwd/groups.dat

require group three

17.8.2 mod auth mysql

• User and password information in mysql

• Manage this information with whatever tools you’re already using for database management.

17.9 Access Control

allow from address

deny from address

allow from 192.168

deny from dev.apacheadmin.com

deny from wanadoo.fr

The addresses specified can be a host name (partial, or complete) or an IP address (partial or complete).

To be even more specific, you need to use the Order directive:

108

Order deny,allow

Deny from all

Allow from apacheadmin.com

This can appear in a <Directory section, or in a .htaccess file.

These are applied as a series of filters. Everyone is excluded, then apacheadmin.com is let in. The other
way around, it would be ineffectual.

Alternately,

Order allow,deny

Allow from all

Deny from wanadoo.fr

17.9.1 Satisfy

Use the satisfy directive when any one of a set of restrictions may be met. For example, if you want people
inside your company to get into an area without being asked for a password, but people outside the company
to be asked for a password, you could do the following:

Require group customers

Allow from internal.subnet.com

Satisfy any

See also satisfy all for another spin on this.

See also mod perl access control handlers.

109

110

Section 18

Spiders

18.1 Introduction

Spiders, also known as robots, or automated user agents, or a variety of other things, are any software which
automatically fetches content from the web. This may be done for a variety of different purposes.

• Indexing

• Searching

• Offline browsing

• Testing

• Link checking

• Performance testing (like ab)

18.2 Potential problems

• High server load

• Black holes

• DOS

18.3 Spiders in the logs

• altavista.com

• yahoo.com

• google.com

111

• etc

• Also, names like ’emailsiphon’

18.4 Excluding spiders from your site

There are a number of ways to exclude robots from your site.

18.4.1 robots.txt

Place a file called robots.txt in your DocumentRoot directory.

User-agent: *

Disallow: /cgi-bin/

Disallow: /datafiles/

or

User-agent: Scooter

Disallow: /dont-index/

18.4.2 ROBOTS metatag

<META NAME="ROBOTS" CONTENT="INDEX,NOFOLLOW">

• INDEX

• NOINDEX

• FOLLOW

• NOFOLLOW

18.4.3 Yell at the operator

Look up the IP address that it is coming from, and email the admin at that location.

112

18.4.4 Block by address

Order allow,deny

Allow from all

Deny from unfriendly.spider.com

18.4.5 Blocking with Deny from Env

SetEnvIf User-Agent EmailSiphon Spammers

Order Allow,Deny

Allow from all

Deny from env=Spammers

18.5 Writing your own spider

• Don’t

• Get one from somewhere else

• Writing a spider is easy

• Writing a good spider is hard

• See sourcecode in the book

113

114

Section 19

Security

http://httpd.apache.org/docs/misc/security-tips.html

19.1 Overview

Apache has a significantly lower incidence of security problems, and significantly higher speed of resolving
those problems, than that other web server. However, the last several releases have been security bug fix
releases. And, although we try to ship apache ”secure by default”, there are a number of things that you
can do to improve the situation, as well as a lot of things that you can do to make it worse.

Here’s the simplistic list of what you should do.

• Keep file permissions as restrictive as possible

• Disable unused ports

• Remove unnecessary user accounts

• Don’t use telnet

• Limit modules (Don’t have modules installed that you are not using)

• Avoid FrontPage like the plague

• Avoid SSI where not necessary

• Don’t use the system password file for authentication

• Don’t put your password file in a document directory

• Develop on a staging server

• Keep up with OS and Apache security patches.

• Restrict CGI

• Use suexec for CGI

Ok, now, in more detail ...

115

19.2 File permissions

The overriding goal in your file permissions, as with any security precaution, is to be as paranoid as possible.
Set file permissions at the most restrictive possible level which still allows people to get their work done.
Security is inconvenient. Get over it. Getting hacked is more inconvenient. Train yourself to think in terms
of what damage a malicious person could cause if they had the urge to do so.

Remember that the server runs as the nobody user (or whatever you have User set to) in the nobody group
(or whatever you have Group set to) and that any web-based attacks will be run as that userID. So no files
should be owned by, or writeable by, that user and/or group. (Note that I’ll contradict this in the DAV
chapter (22), but will provide a way around that.) There are a few small exeptions to this, and even there,
you should be careful.

19.2.1 Content directories

The content directories (cgi-bin, htdocs, and icons) have the unfortunate requirement that the content
in them will need to be modified from time to time. Thus, you’ll have to give someone write permission
to those directories. And, at the same time, you’ll need to give the Apache user read permission to those
directories.

Clearly identify the group of people that should have write permission to this content. Put those users in a
user group, and give that group write access to that directory.

The icons directory is a little different, since the content in there never actually changes (on most servers)
and so can safely remain unwriteable. The directory can be 755, and the content in it be 644, all owned by
root.

19.2.2 Library

Library directories (libexec and include) contain files that are needed by Apache at startup, and are not
required by anyone else at any other time. In particular, libexec contains the modules which you have built
as shared objects, and include contains files that may be needed when building modules using apxs.

Solely for the purposes of Apache, these directories may be made mode 700, since the only time they are
needed is during startup, when Apache is root, and has not yet relinquished its priveleges. And you don’t
want anyone to have an opportunity to meddle with these files. Some folks say that this is being overly
paranoid.

19.2.3 bin

The bin directory is a little bit of a mixed bag, in that it contains files that you want everyone to have access
to (or you might) and several that you don’t. This somewhat depends on how paranoid you are.

The directory itself must NEVER be writeable.

116

drwxr-xr-x 2 root root 4096 Mar 30 20:27 .

drwxr-xr-x 12 root root 4096 Mar 30 20:27 ..

-rwxr-xr-x 1 root root 43452 Mar 30 20:27 ab

-rwxr-xr-x 1 root root 7107 Mar 30 20:27 apachectl

-rwxr-xr-x 1 root root 26591 Mar 30 20:27 apxs

-rwxr-xr-x 1 root root 3636 Mar 30 20:27 checkgid

-rwxr-xr-x 1 root root 10937 Mar 30 20:27 dbmmanage

-rwxr-xr-x 1 root root 12788 Mar 30 20:27 htdigest

-rwxr-xr-x 1 root root 35464 Mar 30 20:27 htpasswd

-rwxr-xr-x 1 root root 489980 Mar 30 20:27 httpd

-rwxr-xr-x 1 root root 7288 Mar 30 20:27 logresolve

-rwxr-xr-x 1 root root 5944 Mar 30 20:27 rotatelogs

-rws--x--x 1 root root 10476 Mar 30 20:27 suexec

Users (ie, not root) will routinely have need of the htpasswd and htdigest utilities, and possibly also the
dbmmanage utility, to create password files for use with authentication.

Users may wish to run httpd -v or httpd -l, for example, to get additional information about the apache
server. They should probably be permitted to do this, so that they don’t have to contact you every time
they have a question.

Users probably do not need to have access to apachectl, ab, and logresolve. These files can safely be
made mode 700.

You should not alter the permissions on suexec or rotatelogs, as they will be run by the unprivileged
Apache processes.

checkgid is only used, if ever, at install.

19.2.4 logs

The logs directory must never be writeable by any user other than root. If another user can write to the
logs directory, they can compromise Apache and gain root-level access to your server.

The log files themselves are created by Apache, and you should not modify their permissions.

19.2.5 proxy

If you are running mod proxy, then you may have a proxy directory created on server install. This directory
will be owned by the nobody user, or whatever user Apache is configured to run as, because Apache will
need to write content to the proxy cache while it is running. This is one of the very few exceptions to the
rule that nothing should be owned by the Apache user. And some people will say that even this poses a
security risk, as a clever CGI program, for example, could modify content in the cache, and cause a user to
send sensitive data to one place, while believing it was going somewhere else.

117

19.2.6 public html

If users have web content in their home directory, this poses a special set of problems. In addition to having
to set the permissions correctly, you also have to persuade the users, and the system administrators, that it
is safe to do it that way.

There are two requirements that have to be satisfied. First, Apache needs to be able to read the files in the
directory. Second, Apache needs to be able to traverse the directory tree to get to the files.

The first requirement means that files will typically need to be mode 644 or greater. The second means that
the directories themselves need to be mode 755 or greater. Also, parent directories will need to be 711 or
greater. For example, if user content is in /home/eddie/public html, the the directory /home/eddie will
need to be 711.

Usually home directories are created with a mode of 700, and users will tend to gripe at having to loosen
these. Although there are some strange ways around this, the very best thing to tell them is:

• Making the directory +x does not actually allow anyone to read files in there, just to cd through it.
Since the directory is not +r, it doesn’t really matter.

• If they are still concerned, remind them they they should not put confidential files in the root of their
home directory anyway, but should instead put it in subdirectories which are themselves 700

Some folks like to make the public html directory owned by the apache Group, then make the directory
mode 750. This has the distinct disadvantage that new files, created by the user, will not be owned by
that group, and neither will subdirectories. While you presumably could make the apache Group the users’
primary group, this is probably not recommended.

19.3 Configuration

While we try to ship Apache “secure by default”, there are always things that you might want to do to
further tighten it down. And there are without question a number of things that you can do to make it
worse, so need to know about so that you can avoid them.

19.3.1 ServerTokens

Web servers return a Server: header as part of the response to the client. This header usually tells the
client something about the server, like what server software it is running.

By default, it returns fairly detailed information:

Server: Apache/1.3.29 (Unix) PHP/4.3.4 mod perl/1.29

You may not want to give out this much information, as it gives crackers that tiny extra edge, and saves
them the work involved in figuring out what server you’re running. This lets them launch slightly more
targeted attacks.

Understand that this is cosmetic security. It does not fix your vulnerabilities, it just hides them a little bit.

118

Setting ServerTokens allows you to give out less information in the Server: headers.

Example:

ServerTokens Min

Full Apache/1.3.29 (Unix) PHP/4.3.4 mod perl/1.29
OS Apache/2.0.41 (Unix)
Min[imal] Apache/1.3.27
Minor (2.x only) Apache/2.0
Major (2.x only) Apache/2
Prod[uctOnly] Apache

19.3.2 ServerTokens - hacking the source

If you get particularly paranoid, and think that by lying about what the server is you’ll get some additional
benefit, well, there’s no direct way to do this with configuration directives. In fact, there’s a whole FAQ
about how this isn’t a particularly good idea.
http://httpd.apache.org/docs/misc/FAQ.html#serverheader

But, I’ll tell you how to do it anyway. Because that’s they kind of guy I am.

In Apache 1.3, you need to modify include/httpd.h and recompile:

#define SERVER_BASEVENDOR "Apache Group"

#define SERVER_BASEPRODUCT "Apache"

#define SERVER_BASEREVISION "1.3.29"

In Apache 2.0, it’s in include/ap release.h

#define AP_SERVER_BASEVENDOR "Apache Software Foundation"

#define AP_SERVER_BASEPRODUCT "Apache"

#define AP_SERVER_MAJORVERSION "2"

#define AP_SERVER_MINORVERSION "0"

#define AP_SERVER_PATCHLEVEL "48"

Please understand that most of the attacks against web servers are conducted by automated scripts, which
will run attacks regardless of what server you claim to be running, so this has very little actual benefit.

In fact, I tend to think that it has two very significant detrimental effects. First, it makes you feel more secure
when you are not, and a false sense of security leads you to do stupid things. Second, it makes you actually
forget what version you’re running. httpd -v returns incorrect information, and you can’t determine the
version number. So, when a new version comes out, you forget to upgrade, and end up trading cosmetic
security for the real security of a patched new version.

119

19.3.3 ServerSignature

Automatically-generated error documents - such as when you go to a bad URL, or get a server error - have
server information in them which looks a lot like the Server: headers. However, the information here is
controled by a different directive. ServerSignature can be set to On, which returns the server information,
Off, which does not, or Email which additionally adds the email address supplied in the ServerAdmin

directive, with a mailto: link.

On all versions prior to 2.0.44, the server information returned is the server version number and the
ServerName. With version 2.0.44 and later, ServerSignature will return the details specified by the
ServerTokens directive.

ServerTokens default settings
Although the default value of this directive is Off, the default configuration file sets it
to On.

19.4 SSI

Server Side Includes, which will be discussed in an upcoming chapter, can be a significant security risk. When
enabling SSI, remember that you are allowing someone to execute arbitrary commands on your server. If
that doesn’t give you pause, then you’re entirely too trusting.

Don’t enable SSI unless you need to. If you need to, then enable it for the smallest possible scope of
directories. And, if possible, use IncludesNoExec rather than Includes as your Options setting.

The only saving grace here is that the arbitrary commands are executed by the Apache user, who, hopefully,
doesn’t own any content on your server, as specified in the section above on file permissions.

19.5 CGI

As with SSI, CGI allows people to execute arbitrary code on your server. You should, therefore, be very
frightened. This is much more flexible than SSI, though, because people can write arbitrarily complex
programs in any language, and execute them on your server.

You should see the suexec section later for details about running CGI programs as other users, but by
default, CGI programs are run as the user and group specificed in the User and Group directives.

As with SSI, you should limit as much as possible the directories in which CGI execution is permitted. If
possible, allow CGI execution in ScriptAlias directories only, as this will ease the burden of auditing code,
since you won’t have to go hunting for it.

Poorly written CGI programs are the easiest, fastest, and most common way to break into an Apache server,
or to exploit the resources of an Apache server to do various things like send spam by proxy.

120

19.5.1 CGI exploit example - trusting form input

One of the most common CGI exploit categories involved accepting data from HTML forms and trusting
it. Remember that the user cannot be trusted. Like your mother always told you, don’t put that in your
command, you don’t know where it’s been.

Consider the following scenario. You have a form on your web site, which allows users to send you feedback
email. Within your CGI code is something like the following:

open MAIL, "|/usr/bin/sendmail -s $FORM’subject’ $FORM’to’";

print MAIL $FORM’body’;

print MAIL "\n\n.\n\n";
close MAIL;

Looks pretty straightforward. Data comes in from the form fields subject, to, and body, and this gets
passed off to sendmail, which delivers the email. Email is composed to the address in to with a subject line
of subject and a body of body, all specified in the form.

There are two problems here.

The first is that a clever (or not-so-clever, really) spammer can use this form to send as many email messages
as they want, to whomever they want, by posting data to your CGI program. Since that email will come
from your server, you will appear to be responsible for that email.

The second problem is a little more subtle, and much more dangerous. It has to do with the awful way that
the code here is calling sendmail. Rather than using a module/library to send the email, it is calling the
system executable, and passing arguments to it. This is universally a bad idea, because it allows a clever
person to circumvent your command line and insert their own.

Consider, for example, if I enter into the form field to the value:

bob@foo.com ; rm -rf /

The first part of this is an email address. Great. But then I have the character ;, which terminates the
command and starts a new one. At a regular command line, the ; character allows you to type multiple
commands in the same line. Since your code is calling the command line, the same rules apply. So putting
this in the form field will cause the sendmail command to be abandoned, and my other command to be
executed, recursing through the entire file system deleting any file that I happen to have access to.

Fortunately for the hackers, there are several rather popular (read: widely installed) CGI programs that do
exactly that, and so all that they need to do is write scripts that attempt to put these sorts of arguments
into web forms and see if they can do anything.

19.5.2 CGI exploit example - hidden form fields

Hidden form fields are not hidden. This is another example of cosmetic security.

* Hidden form fields are not hidden.

121

* Don’t put important things in there, like passwords, SQL statements, usernames, etc.

* Don’t use ”hidden” form fields without aggressively validating that they contain good stuff.

=CGI exploit examples - Doing it yourself

* There are CGI libraries in your language of choice. Use them.

* You haven’t thought of all the possible exploits. Neither have the library authors, but they’ve thought
about it more than you have.

19.6 Default file system settings

<Directory />

AllowOverride None

Options FollowSymlinks

Order deny,allow

Deny from all

</Directory>

* Don’t permit C¡.htaccess¿ files anywhere, unless explicity stated. This also provides performance benefits.

* Don’t permit access, unless explicitly stated.

* Note that for any document directory you’ll need to add:

<Directory /path/to/directory>

Order allow,deny

Allow from all

</Directory>

19.7 UserDir

UserDir disabled root

* Or, better:

122

UserDir disabled

UserDir enabled bob waldo sally

19.8 Modules

The overarching rule on modules is simply: Don’t run modules you’re not using. Modules that you’re not
actively using will not get maintained, and will not get patched when there are security problems

If mod asis has a bug, and you don’t know what mod asis is, you’re not likely to upgrade it.

On the last day, we’ll go through the complete list of standard modules and what they do. Unfortunately,
if you’re running a third-party packaged distribution, it likely contains modules that we’ve not discussed.

19.9 suexec

• Execute CGI programs as a different user.

• Use User and Group directives in virtual hosts

• username urls automatically execute CGI as that user

• Tries to prevent you from executing unsafe things, or from executing stuff in an unsafe manner.

• Checks file path, ownership, and permissions, before permitting it to be executed.

• Refuses to run with uid and gid that are outside of a particular approved range

http://apache-server.com/tutorials/LPsuexec.html

suEXEC options:

--enable-suexec enable the suEXEC feature

--suexec-caller=NAME set the suEXEC username of the allowed caller [www]

--suexec-docroot=DIR set the suEXEC root directory [PREFIX/share/htdocs]

--suexec-logfile=FILE set the suEXEC logfile [PREFIX/var/log/suexec log]

--suexec-userdir=DIR set the suEXEC user subdirectory [public html]

--suexec-uidmin=UID set the suEXEC minimal allowed UID [100]

--suexec-gidmin=GID set the suEXEC minimal allowed GID [100]

--suexec-safepath=PATH set the suEXEC safe PATH [/usr/local/bin:/usr/bin:/bin]

--suexec-umask=UMASK set the umask for the suEXEC’d script [server’s umask]

(These are ./configure command line options.)

123

19.10 mod security

http://www.modsecurity.org/

mod security is a third-party module which is intended to give a firewall-like front end to Apache, in order
to stave off attacks before they make it to Apache. It lets you write pattern-based rules to intercept requests
and block them.

To install mod security, download and unpack the source, change into the directory for the particular
version of Apache that you’re running (apache1 or apache2), then type:

apxs -cia mod_security.c

You will need to provide the full path to apxs as it will probably not be in your path,

The result of running this command will be, hopefully, that you end up with the file
/usr/local/apache/libexec/mod security.so being created, and the following line added to your httpd.conf
:

LoadModule security_module libexec/mod_security.so

You’ll then want to add one or more rule to your configuration file:

SecFilterEngine On

SecFilterScanPOST On

SecAuditLog /dev/null

SecFilterDefaultAction "deny,log,status:402"

SecFilter "delete[[:space:]]+from"

SecFilter "insert[[:space:]]+into"

SecFilter "select.+from"

SecFilter "\.\./"
SecFilterSelective "REQUEST METHOD" "SEARCH"

19.11 mod dosevasive

LINK http://www.nuclearelephant.com/projects/dosevasive/

Prevents a denial of service by one site requesting documents many times within a too-short period of time.

124

apxs -cia mod_dosevasive.c

Then ...

<IfModule mod_dosevasive.c>

DOSHashTableSize 3097

DOSPageCount 2

DOSSiteCount 50

DOSPageInterval 1

DOSSiteInterval 1

DOSBlockingPeriod 10

</IfModule>

Note that the blocking period is only 10 seconds. However, if the client persists in requesting pages, this
period is extended with each request, causing this block to last for as long as the persist in the behavior.

125

126

Section 20

SSL

http://openssl.org/

http://modssl.org/

• public/private key cryptography

• SSL Certificates

• Signed certificates

– Thawte

– Verisign

– Sign it yourself

20.1 Intro

• Runs on port 443

• Accessed via https://servername/

20.2 Installing SSL

• OpenSSL

• mod ssl

• Apache 2.0 - ./configure –with-ssl

127

20.3 Certificates

• Generate a key pair

openssl genrsa -rand file1:file2:file3

-out www.domain.com.key 1024

Don’t enter a pass phrase, or you will have to enter that passphrase every time you restart Apache

• Generate certificate signing request

openssl req -new -key www.domain.com.key -out www.domain.com.csr

You will be asked for a series of information, to which you need to provide answers. These answers
will appear on the certificate itself, and verify its authenticity.

When it asks for your ’Common Name’, this is actually the name of the web site - the fully qualified
domain name which will be used to serve the site. So this should be, for example, ’www.rcbowen.com’
or similar. Not your name. Not your company name.

At this point, you can either sign this yourself, or you can submit the certificate request to one of the
CA (Certificate Authorities) for signing.

http://digitalid.verisign.com/server/apacheNotice.htm

http://www.thawte.com/certs/server/request.html

• Sign it yourself

openssl x509 -req -days 365 -in www.domain.com.csr -signkey

www.domain.com.key -out www.domain.com.cert

• Install the key - place it in the certs directory (should be either under the openssl directory, or some-
where under the Apache directory.

20.4 Configuration

<VirtualHost _default_:443>

ServerName www.domain.com

SSLEngine on

SSLCertificateFile /path/to/www.comain.com.cert

SSLCertificateKeyFile /path/to/www.domain.com.key

</VirtualHost>

See also the default SSL configuration that comes with openssl when you install it. It has a lot more stuff
than this in it.

128

You can also use *:443 instead, but, if you do, you need to make sure that all the other vhosts that you are
running use the same syntax.

129

130

Section 21

modules

21.1 Module list

These are the modules that come with Apache

21.1.1 Apache 1.3 modules:

(To get this moudle list, just type ./configure --help

[access=yes actions=yes alias=yes]

[asis=yes auth=yes auth_anon=no]

[auth_db=no auth_dbm=no auth_digest=no]

[autoindex=yes cern_meta=no cgi=yes]

[digest=no dir=yes env=yes]

[example=no expires=no headers=no]

[imap=yes include=yes info=no]

[log_agent=no log_config=yes log_referer=no]

[mime=yes mime_magic=no mmap_static=no]

[negotiation=yes proxy=no rewrite=no]

[setenvif=yes so=no speling=no]

[status=yes unique_id=no userdir=yes]

[usertrack=no vhost_alias=no]

131

21.1.2 Apache 2.0 modules:

[access actions alias]

[asis auth auth_anon]

[auth_dbm auth_digest autoindex]

[cache cern_meta cgi]

[cgid charset_lite dav]

[deflate dir env]

[example expires ext_filter]

[file_cache headers imap]

[include info isapi]

[log_config mime mime_magic]

[negotiation proxy rewrite]

[setenvif so speling]

[ssl status suexec]

[unique_id userdir usertrack]

[vhost_alias]

21.1.3 What’s new, and what’s missing

The modules mod auth db, mod digest, mod log agent, mod log referer, and mod mmap static go away
in version 2.0.

New in version 2.0 are mod cache, mod cgid, mod charset lite, mod dav, mod deflate, mod ext filter,
mod file cache, mod isapi, and mod ssl.

21.2 mod access

Name mod access

On by default? Yes

Docs http://httpd.apache.org/docs/mod/mod access.html

mod access provides access control based on client hostname, IP address, or other characteristics of the client
request.

132

21.3 mod actions

Name mod actions

On by default? Yes

Docs http://httpd.apache.org/docs/mod/mod actions.html

Provides for executing CGI scripts based on media type or request method.

21.4 mod alias

Name mod alias

On by default? Yes

Docs http://httpd.apache.org/docs/mod/mod alias.html

Mapping different parts of the file system into the document tree, and URL redirection.

21.5 mod asis

Name mod asis

On by default? Yes

Docs http://httpd.apache.org/docs/mod/mod asis.html

Sending files which contain their own HTTP headers.

Content-type: 32

Content-type: text/html

Content-language: en

Set-Cookie: name=value

And then the content goes here.

133

21.6 mod auth

Name mod auth

On by default? Yes

Docs http://httpd.apache.org/docs/mod/mod auth.html

Basic HTTP authentication, using text files to contain user and group information.

21.7 mod auth anon

Name mod auth anon

On by default? No

Docs http://httpd.apache.org/docs/mod/mod auth anon.html

Anonymous user access to authenticated areas.

21.8 mod auth db

Name mod auth db

On by default? No

Docs http://httpd.apache.org/docs/mod/mod auth db.html

Basic HTTP authentication, using Berkeley DB files to contain user and group information.

This module is removed in Apache 2.0, and only mod auth dbm remains. There’s very little chance that you’ll
ever have a need for both at the same time, or even have more than one dbm implementation install on the
same machine.

21.9 mod auth dbm

Name mod auth dbm

On by default? No

Docs http://httpd.apache.org/docs/mod/mod auth dbm.html

134

Basic HTTP authentication, using DBM files to contain user and group information.

21.10 mod auth digest

Name mod auth digest

On by default? No

Docs http://httpd.apache.org/docs/mod/mod auth digest.html

MD5 digest authentication.

In Apache 2.0, no longer marked as experimental.

21.11 mod autoindex

Name mod autoindex

On by default? Yes

Docs http://httpd.apache.org/docs/mod/mod autoindex.html

Automatic directory listings

21.12 mod cern meta

Name mod cern meta

On by default? No

Docs http://httpd.apache.org/docs/mod/mod cern meta.html

Support for HTTP header metafiles

135

21.13 mod cgi

Name mod cgi

On by default? Yes

Docs http://httpd.apache.org/docs/mod/mod cgi.html

Support for execution of CGI programs

21.14 mod digest

Name mod digest

On by default? No

Docs http://httpd.apache.org/docs/mod/mod digest.html

Provides MD5 authentication, but has been replaced by mod auth digest

21.15 mod dir

Name mod dir

On by default? Yes

Docs http://httpd.apache.org/docs/mod/mod dir.html

Provides for mapping URLs with a trailing slash to an index file, typically called index.html

21.16 mod env

Name mod env

On by default? Yes

Docs http://httpd.apache.org/docs/mod/mod env.html

Handles the passing of environment variables to CGI programs

136

21.17 mod example

Name mod example

On by default? No

Docs http://httpd.apache.org/docs/mod/mod example.html

An example module, demonstrating the Apache API, and the technique of writing Apache modules

21.18 mod expires

Name mod expires

On by default? No

Docs http://httpd.apache.org/docs/mod/mod expires.html

Gives the ability to apply Expires: headers to resources.

21.19 mod headers

Name mod headers

On by default? No

Docs http://httpd.apache.org/docs/mod/mod headers.html

Add arbitrary HTTP headers to resources

21.20 mod imap

Name mod imap

On by default? Yes

Docs http://httpd.apache.org/docs/mod/mod imap.html

Handles server-side image map files

137

21.21 mod include

Name mod include

On by default? Yes

Docs http://httpd.apache.org/docs/mod/mod include.html

Server-parsed documents (Server-side includes)

21.22 mod info

Name mod info

On by default? No

Docs http://httpd.apache.org/docs/mod/mod info.html

Provides the server-info handler, for providing information about server configuration.

21.23 mod log agent

Name mod log agent

On by default? No

Docs http://httpd.apache.org/docs/mod/mod log agent.html

Logging of user agent (browser). This module is superseded by the LogFormat directive in mod log config

21.24 mod log config

Name mod log config

On by default? Yes

Docs http://httpd.apache.org/docs/mod/mod log config.html

Allows you to build custom log files. See Chapter 24 for detailed treatment of this module and the function-
ality it provides.

138

21.25 mod log referer

Name mod log referer

On by default? No

Docs http://httpd.apache.org/docs/mod/mod log referer.html

Provides logging of document references. That is, logs the places that have links to your content. This
module is superseded by the LogFornat directive in mod log config

21.26 mod mime

Name mod mime

On by default? Yes

Docs http://httpd.apache.org/docs/mod/mod mime.html

Determining document types by file extensions. See Chapter 8.

21.27 mod mime magic

Name mod mime magic

On by default? No

Docs http://httpd.apache.org/docs/mod/mod mime magic.html

Determining document types using “magic numbers” - that is, by looking at the contents of the file, and,
based on the frequency of occurance of certain patterns or characters, determining what the file type probably
is.

21.28 mod mmap static

Name mod mmap static

On by default? No

Docs http://httpd.apache.org/docs/mod/mod mmap static.html

139

Mapping files into memory to improve performance of serving static document. This module is marked as
experimental.

21.29 mod negotiation

Name mod negotiation

On by default? Yes

Docs http://httpd.apache.org/docs/mod/mod negotiation.html

Content negotiation. See Chapter 10

21.30 mod proxy

Name mod proxy

On by default? No

Docs http://httpd.apache.org/docs/mod/mod proxy.html

A caching proxy server.

21.31 mod rewrite

Name mod rewrite

On by default? No

Docs http://httpd.apache.org/docs/mod/mod rewrite.html and

http://httpd.apache.org/docs/misc/rewriteguide.html

Provides the ability to rewrite incoming URL requests in order to do all of the things that you wish mod alias
did.

140

21.32 mod setenvif

Name mod setenvif

On by default? Yes

Docs http://httpd.apache.org/docs/mod/mod setenvif.html

Set environment variables based on client information. Can be used for things such as access control:

SetEnvIf User-Agent ^KnockKnock/2.0 let_me_in

<Directory /docroot>

Order Deny,Allow

Deny from all

Allow from env=let_me_in

</Directory>

21.33 mod so

Name mod so

On by default? No

Docs http://httpd.apache.org/docs/mod/mod so.html

Dynamically load modules as shared objects at runtime.

21.34 mod speling

Name mod speling

On by default? No

Docs http://httpd.apache.org/docs/mod/mod speling.html

Automatically correct minor typos in URLs, such as character transposing, wrong capitalization, or other
small errors.

141

21.35 mod status

Name mod status

On by default? Yes

Docs http://httpd.apache.org/docs/mod/mod status.html

Display server status in a convenient HTML report.

21.36 mod unique id

Name mod unique id

On by default? No

Docs http://httpd.apache.org/docs/mod/mod unique id.html

Generate unique identifiers for each incoming request for tracking purposes.

21.37 mod usertrack

Name mod usertrack

On by default? No

Docs http://httpd.apache.org/docs/mod/mod usertrack.html

User tracking using cookies. Make sure you know what you are doing before enabling this. It sends a lot of
cookies.

21.38 mod vhost alias

Name mod vhost alias

On by default? No

Docs http://httpd.apache.org/docs/mod/mod vhost alias.html

Dynamically configure a large number of virtual hosts without changing your server configuration file.

142

Section 22

WebDAV

WebDAV, Distributed Authoring and Versioning, is, to grossly oversimplify, file transfer over HTTP. The
advantages over FTP are numerous, but can be simplified to this:

• Configuration via your HTTP server

• Uses whatever HTTP authentication you already have in place

• Security without creating user accounts

There are other advantages, but those are the ones that I primarily care about.

22.1 mod dav on 1.3

The mod dav module is available for Apache 1.3, and can be obtained from http://webdav.org/mod dav/

If you want to install mod dav on Apache 1.3, it is recommended that you use Apache Toolbox or similar in
order to get it installed correctly.

22.2 mod dav on 2.0

To enable mod dav on Apache 2.0, run configure with these additional arguments:

./configure --enable-dav --enable-dav-fs

The dav-fs argument tells dav to use the file system as the document repository. You can also use a
database, or a versioning system such as Subversion for your document repository, but for our purposes,
using the file system seems to make a lot more sense.

143

To enable DAV in a particular directory, you need only do the follwing:

<Directory /usr/local/apache/htdocs>

DAV On

</Directory>

Note that the files in that directory will need to be owned and/or writeable by the web user.

22.3 DAV clients

There are a number of DAV-enabled clients. Among these are:

• Windows XP (The entire OS)

• DreamWeaver

• Cadaver

We’ll be using Cadaver for our demonstration.

Obtain cadaver from http://webdav.org/cadaver/ and install it. Once installed, you should be able to
access your server via:

% cadaver localhost:90/

dav:/> ls

Listing collection ‘/’: succeeded.

Coll: images 0 Apr 11 2002

*header.html 2474 Aug 27 21:50

*index.html 7914 Dec 4 19:24

dav:/> edit index.html

... etc

With this in place, you can enable HTTP authentication on the particular directory, and use this as an FTP
replacement. There are clients available for most operating systems - see http://webdav.org/projects/

for a listing of some of the clients available.

144

Section 23

mod proxy

mod proxy implements a simple caching proxy server on top of Apache. We’ll consider caching, and proxying,
and then talk more generally about how this can be used.

There’s a significant difference between mod proxy on Apache 1.3 and 2.0. On 1.3,
proxying and caching are both provided by mod proxy, but in 2.0 these are separate
modules. Additionally, the <Proxy> directive in 2.0 replaces the rather less intuitive
<Directory proxy:*> syntax in 1.3. If you are going to do proxying on 1.3, you’ll
need to consult the documentation for other nuances.

23.1 Caching

ProxyRequests On

CacheRoot /usr/local/apache/proxy

Make sure that the specified directory is owned/writable by nobody.

In your browser, you will need to configure your proxy server to point to the new caching proxy server.
When you make requests, they will get logged in the Apache access log, and retrieved files will be cached in
the specified directory.

S
ecurity concerns regarding cache poisoning. Talk about the naming convention for files,
and how files could be subverted.

145

23.2 Proxying

The proxy part lets you hide other servers behind your server. This lets you do load balancing, or simply
serve content from another site for some reason.

ProxyPass /mirror/foo/ http://foo.com/

ProxyPassReverse /mirror/foo/ http://foo.com/

Requests to any URL starting with /mirror/foo/ will be proxied through to requests on http://foo.com/.
The ProxyPassReverse intercepts redirects coming from foo.com and adjusts them to contain the /mirror/foo/
URL before passing them on to the client.

Note that absolute URLs in HTML returned from foo.com are likely to break this entire arrangement.

23.3 Rewrite and proxying

23.4 mod proxy html

23.5 General comments

These two sets of functionality are, of course, closely related, but they are divisible. In 2.0, they have been
split into two separate modules in order to modularize things a little better.

One frequent use of this module is to split the load of a particular server onto several other servers, and
have a front-end server farm out the content to those back end servers. Similarly, it could be used to expose
machines that would otherwise be unreachable from the outside world, by making them available via a special
URL on the proxy server.

146

Index

Andreessen, Marc, 2
Apache Software Foundation, The, 3
apxs, 124
Architecture, 13
As We May Think, 1
ASF, 3

Behlendorf, Brian, 2
Berners-Lee, Tim, 1
Boot

starting at, 19
Bush, Vannevar, 1

CERN, 1

Fielding, Roy, 2

History, 1

MaxSpareServers, 13
McCool, Rob, 2
MinSpareServers, 13
mod proxy, 145
mod security, 124
Mosaic, 2
MPM, 14

perchild, 16
prefork, 14
win32, 16
worker, 14, 15

NCSA, 2
Netscape, 2

Perchild MPM, 16
Prefork, 13
Prefork MPM, 14
Processes, 13
Proxy, 145

Shambala, 3
Starting at boot, 19

UIUC, 2

Win32 MPM, 16
Worker MPM, 14, 15
World Wide Web, 1
WWW, 1

147

