
Chapter 6: Filter Modules

In terms of application development, the most important innovation in Apache 2 is the
filter architecture, and the ability to chain multiple different data processing operations at
will. This chaptertakes a detailed look at the filter chain, and offers several illustrative
filter modules.

Before going into details, let's review a few basics. Chapter 2 described howfilters
operate on a “data” axis, orthogonal to the processing axis familiar from Apache 1 and
other webservers. But this is not the whole story. Strictly speaking, it is only really
accurate for content filters: that is, those filters that operate on the body of an HTTP
request or response. If your application is not concerned directly with processing HTTP
requests, you may need to use filters that are not so clearly associated with the content
generator.

Types of Filter

So let's take a closer look at the filter chain. Filters are classified in two ways:

1. Input and
Output Filters

Filters that process
request data coming
from a client are
known as input
filters. Filters that
process response data
as it is sent out to the
client are known as
output filters.

We will deal with the
APIs for input and
output filters in detail
below.

2. Content,
Protocol and Connection Filters

Each filter chain (input and output) passes through predefined stages. Thus the same
filter architecture can be used for various different kinds of operation. In brief, from the
content generator to the client, we have:

• Content filters, which process document contents within a request. These are the

Copyright © 2005 Nick Kew (niq@apache.org)

Client

Connection Filters

Protocol Filters

Content Filters

Content Generator

Content Filters

Protocol Filters

Connection Filters

Client

T
C

P
C

on
ne

ct
io

n
Input Filters
(Pull API)

H
T

T
P

R
eq

ue
st

Output Filters
(Push API)

filters most commonly relevant to applications programming.

• Protocol filters, which deal with details of the protocol but treat the contents as
opaque. These are concerned with translating between HTTP data (as defined in
RFC2616) and Apache's internal representation in the request_rec and
associated structures.

• Connection filters, which process a TCP connection without reference to HTTP
(either the protocol or contents). These are concerned with interfacing apache
with the network, and operate entirely outside the scope of HTTP or of any
request_rec.

Although the function of these filters is very different, moving from an applications level
in the inner layers to a system level further out, the API is the same throughout. There is
just one important difference: the inner filters, working on HTTP, have a a valid
request_rec object, whereas connection-level filters have none. All filters have a
conn_rec for the TCP connection.

In more detail, the output chain comprises the following stages in an enumeration in
util_filter.h (the input chain is an exact mirror-image of this, and uses the same
definitions).

AP_FTYPE_RESOURCE is for content filters. These are the first to see content as it is
produced by the content generator, and they serve to examine, modify, or even
completely rewrite it. This is the most common form of applications filter, and
encompasses markup processing (such as SSI or XML filtering), image processing, or
content assembly/aggregation. Resource filters may completely change the nature of
the contents: for example, an XSLT filter might change the contents from XML to
HTML or PDF.

AP_FTYPE_CONTENT_SET is a second stage of content filtering. It is intended for
operations concerned with packaging the contents, such as mod_deflate (which
applies gzip compression).

Filters of type RESOURCE or CONTENT_SET operate on an HTTP Response Entity, the
body contents being returned to the client. The HTTP headers don't pass through these
filters. The headers can be accessed in exactly the same way as in a content generator,
via the headers tables in the request_rec.

AP_FTYPE_PROTOCOL is the third layer of filtering. The normal function here is to
insert the HTTP headers ahead of the data emerging from the content filters. This is
dealt with by a core filter HTTP_HEADER (function ap_http_header_filter), so
applications can normally ignore it. Apache also handles byte ranges requests using a
protocol filter.

AP_FTYPE_TRANSCODE is for transport-level packaging. Apache implements HTTP
chunking (where applicable) at this level.

AP_FTYPE_CONNECTION filters operate on connections, at the TCP level (below the
HTTP level, so "requests" no longer exist). Apache (mod_ssl) uses it for SSL

Copyright © 2005 Nick Kew (niq@apache.org)

encoding. Another application is throttling and bandwidth control.

AP_FTYPE_NETWORK is the final layer, and deals with the connection to the client itself.
This is normally dealt with by Apache's "CORE" output filter (function
ap_core_output_filter).

Anatomy of a Filter

The heart of a filter module is a callback function. How this is called differs between
input and output filters:

• The input filter chain runs whenever the handler requests data from the client.
Apache will call our callback function to request (pull) a chunk of data from it.
Our filter must in turn pull a chunk of data from the next filter in the chain,
process it, and return the requested data to the caller.

• The output filter chain runs whenever the handler sends a chunk of data to the
client. This may be triggered explicitly by the handler (with ap_pass_brigade),
or implicitly when a handler using the stdio-like APIs has filled a default (8Kbit)
buffer. Our filter should process the data, and send (push) a chunk to the next
filter in the chain.

Apart from the callback, there is an optional initialisation function, and filter modules
may of course independently use other parts of the Apache API where necessary.

Pipelining

The basic principle of
pipelining is that we
should not have to
wait for one stage of
processing to
complete before
starting on the next.
In the context of a
webserver, where I/O
commonly takes far
more time than processing a request, this is an important performance issue.

In the Apache 2.x filter architecture, we don't just have the three stages to processing
data. Every filter is itself a stage. So there is still more to be gained by pipelining. As far
as possible, we want to run the filters in parallel.

To run pipelined filters on large documents without introducing scalability problems, we
must avoid having to load an entire document into memory at once. Apache's filters
therefore work on chunks of data rather than entire documents. Any general-purpose
filter must allow for this. Filters should always seek to cooperate with this pipelining:
ideally, a filter should always process a chunk of data and pass it on before the callback
returns. Sometimes this is not possible, and a filter needs to buffer data over more than

Copyright © 2005 Nick Kew (niq@apache.org)

 Linear

 Processing

 Pipelined

 Processing

Read
Input

Process
Request

Send
Output

Read
Input

Send
Output

Process
Request

one call: for example, running an XSLT transform requires that the entire document be
parsed into an in-memory structure, so an XSLT filter can't avoid breaking the pipeline.

Pipelining can be an important consideration when designing a module. If you are
planning to use an external library, it's worth reviewing how well it will work with the
pipeline. In the case of an input filter, that's usually straightforward: it can just pull in
more data from the pipeline on demand. But for an output filter, you need to look for an
API that can accept arbitrary chunks of data. This author has written a number of XML-
and HTML-parsing filters, and working with the Apache pipeline has a profound effect
on the choice of a parser. Among markup processing libraries, Expat and libxml2 have
parseChunk APIs and work well with Apache, but Tidy, OpenSP and Xerces-C have no
such APIs, and so cannot be used without breaking the pipeline.

The Filter API and Objects

We have already introduced the filter callback function. This differs between input and
output filters. So let's deal with each in turn.

Output Filters

The callback prototype for output filters is

apr_status_t my_output_filter_func(ap_filter_t* f,
 apr_bucket_brigade* bb)

Here f is the filter object, and bb a bucket brigade containing an arbitrary chunk (zero or
more bytes) of data in APR buckets. The filter func should process the data in bb, then
pass the processed data to the next filter in the chain, f->next. We will see how to do
this when we develop filter examples later in this chapter.

Input Filters

The input filter callback is a little more complex:

apr_status_t my_input_filter_func(
ap_filter_t* f,
apr_bucket_brigade* bb,
ap_input_mode_t mode,
apr_read_type_e block,
apr_off_t readbytes)

The first two arguments are the same as the output filter arguments, although the usage
differs. This is a pull API, and the function is responsible for fetching a chunk of data
from the next filter in the input chain, putting that data into the bucket brigade, and
returning to the caller. The other arguments are as follows:

Copyright © 2005 Nick Kew (niq@apache.org)

mode is one of an enum:

typedef enum {
 /** The filter should return at most readbytes data. */
 AP_MODE_READBYTES,
 /** The filter should return at most one line of CRLF data.
 * (If a potential line is too long or no CRLF is found, the
 * filter may return partial data).
 */
 AP_MODE_GETLINE,
 /** The filter should implicitly eat any CRLF pairs that it sees. */
 AP_MODE_EATCRLF,
 /** The filter read should be treated as speculative and any
returned
 * data should be stored for later retrieval in another mode. */
 AP_MODE_SPECULATIVE,
 /** The filter read should be exhaustive and read until it can not
 * read any more.
 * Use this mode with extreme caution.
 */
 AP_MODE_EXHAUSTIVE,
 /** The filter should initialize the connection if needed,
 * NNTP or FTP over SSL for example.
 */
 AP_MODE_INIT
} ap_input_mode_t;

Clearly not all of these are relevant to every filter. A filter that cannot support the mode it
is called with is inappropriate, and should remove itself from the filter chain. A filter
may often call the next filter using the same mode it was called with, but this is not
always appropriate, and a filter is free to do otherwise.

The block argument is one of APR_BLOCK_READ or APR_NONBLOCK_READ, and determines
whether the filter should block if necessary. readbytes is an indication of the number of
bytes the filter should read. It is not a hard limit, as a filter that increases data size may
read the same volume of data but have more to return.

Filter Objects

The filter object (along with others discussed in this chapter) is defined in
util_filter.h. Note that the final comment is not strictly accurate - it should read
connection-level filtering for input filtering:

/**
 * The representation of a filter chain. Each request has a list
 * of these structures which are called in turn to filter the data. Sub
 * requests get an exact copy of the main requests filter chain.
 */
struct ap_filter_t {
 /** The internal representation of this filter. This includes

Copyright © 2005 Nick Kew (niq@apache.org)

 * the filter's name, type, and the actual function pointer.
 */
 ap_filter_rec_t *frec;

 /** A place to store any data associated with the current filter */
 void *ctx;

 /** The next filter in the chain */
 ap_filter_t *next;

 /** The request_rec associated with the current filter. If a sub-
request
 * adds filters, then the sub-request is the request associated
with the
 * filter.
 */
 request_rec *r;

 /** The conn_rec associated with the current filter. This is
analogous
 * to the request_rec, except that it is used for input filtering.
 */
 conn_rec *c;
};

The fields that most filter modules will use here are ctx, to store application data for the
filter between calls, and the request_rec to access all the normal request data (in the
case of connection-level filters, there is no valid request_rec field, and the conn_rec
serves a similar purpose). Also the next field will be used to push data to the next filter in
the output chain, or pull data from the next filter in the input chain.

The frec field can normally be treated as opaque by applications, but is necessary to our
understanding of filter internals.

Here it is:

/**
 * This structure is used for recording information about the
 * registered filters. It associates a name with the filter's callback
 * and filter type.
 *
 * At the moment, these are simply linked in a chain, so a ->next
pointer
 * is available.
 *
 * It is used for any filter that can be inserted in the filter chain.
 * This may be either a httpd-2.0 filter or a mod_filter harness.
 * In the latter case it contains provider and protocol information.
 * In the former case, the new fields (from providers) are ignored.
 */
struct ap_filter_rec_t {
 /** The registered name for this filter */
 const char *name;

Copyright © 2005 Nick Kew (niq@apache.org)

 /** The function to call when this filter is invoked. */
 ap_filter_func filter_func;

 /** The function to call before the handlers are invoked. Notice
 * that this function is called only for filters participating in
 * the http protocol. Filters for other protocols are to be
 * initialized by the protocols themselves.
 */
 ap_init_filter_func filter_init_func;

 /** The type of filter, either AP_FTYPE_CONTENT or
AP_FTYPE_CONNECTION.
 * An AP_FTYPE_CONTENT filter modifies the data based on information
 * found in the content. An AP_FTYPE_CONNECTION filter modifies the
 * data based on the type of connection.
 */
 ap_filter_type ftype;

 /** The next filter_rec in the list */
 struct ap_filter_rec_t *next;

 /** Providers for this filter */
 ap_filter_provider_t *providers;

 /** Trace level for this filter */
 int debug;

 /** Protocol flags for this filter */
 unsigned int proto_flags;
};

The name is just an identifier for filter configuration, which will be discussed in Chapter
8. The filter_func is the main callback already introduced, and the
filter_init_func is a seldom-used initialisation function called when the filter is
inserted and before the first data are available.

The final three fields were introduced with the smart filtering architecture in Apache 2.1.

Filter I/O

Data passes through the filter chain on the bucket brigade. There are several strategies for
dealing with the data in a filter:

• If the filter merely looks at the data but doesn't change anything, it can pass the
brigade on as-is.

• If the filter makes changes but preserve content length (e.g. a case filter for ASCII
text), it can replace bytes in-place.

• A filter that passes through most of the data intact but makes some changes can

Copyright © 2005 Nick Kew (niq@apache.org)

edit the data by direct bucket manipulation.

• A filter that completely transforms the data will often need to replace the data
completely, by creating an entirely new brigade and populating it. It can do that
either directly, or using stdio-like functions. There are two families of stdio-like
functions. APR provides apr_brigade_puts/apr_brigade_write/etc, while
util_filter provides ap_fwrite/ap_fputs/ap_fprintf/etc.

Managing I/O is at the heart of filtering, and will be demonstrated at length when we
develop example filters later in this chapter.

Smart Filtering in Apache 2.1

The original Apache 2.0 filter architecture presents problems when used in with unknown
content; either in a proxy or with a local handler that generates different content types to
order. The basic difficulty lies in the Apache configuration. Content filters need to be
applied conditionally: for example, we don't want to pass images through an HTML filter.
The generic configuration directives for filters are:

• SetOutputFilter (unconditionally inserts a filter)

• AddOutputFilter, RemoveOutputFilter (inserts or removes a filter based on
"extension")

• AddOutputFilterByType (inserts a filter based on Content Type)

In the case of a proxy, extensions are meaningless, as we cannot know what conventions
an origin server might adopt. Neither is AddOutputFilterByType (nor its hypothetical
siblings such as AddOutputFilterByEncoding or AddOutputFilterByLanguage) any
use, because the response headers from the proxy are unknown at the time the filter is
inserted and initialised. So we have to resort to the unsatisfactory hack of inserting a filter
unconditionally, checking the response headers from the proxy, and then having the filter
remove itself where appropriate. Examples of filters that will do this are mod_deflate,
mod_xmlns, mod_accessibility and mod_proxy_html.

Pre- and Post-Processing

As with an origin server, it may be necessary to preprocess data before the main content-
transforming filter, and/or postprocess afterwards. For example, when dealing with
gzipped content, we need to uncompress it for processing and re-compress the processed
data. Similarly, in an image-processing filter, we need to decode the original image
format and re-encode the processed data.

This may involve more than one phase. For example, when filtering text, we may need to

Copyright © 2005 Nick Kew (niq@apache.org)

both to uncompress gzipped data and transcode the character set before the main filter.

So, potentially we have a multiplicity of filters: transformation filters, together with pre-
and post-processing for different content types and encodings. To repeat the hack of
having each filter inserted and determining whether to run or remove itself in such a setup
goes beyond simple inelegance and into the absurd. An alternative architecture is
required.

mod_filter

The solution to this is implemented in Apache 2.1 in mod_filter. mod_filter works by
introducing indirection into the filter chain. Instead of inserting filters in the chain, we
insert a filter harness, which in turn dispatches conditionally to a filter provider. Any
content filter may be used as a provider to mod_filter; no change to existing filter
modules is required (although it may be possible to simplify them). There can be multiple
providers for one filter, but no more than one provider will run for any single request.

A filter chain comprises any number of instances of the filter harness, each of which may
have any number of providers. A special case is that of a single provider with
unconditional dispatch: this is equivalent to inserting the provider filter directly into the
chain.

mod_filter is only implemented for output filters: the configuration problems it deals
with are not relevant to the input chain. And although it can be applied anywhere in the
output filter chain, it is only really relevant to content (application) filters. Neither the old
nor the new filter configuration directives are generally used for the outer filters: for
example, SSL (both input and output) is activated by mod_ssl's own configuration
directives instead.

Protocol Handling

In Apache 2.0, each filter is responsible for ensuring that whatever changes it makes are
correctly represented in the HTTP response headers, and that it does not run when it
would make an illegal change. This imposes a burden on filter authors to reimplement
some common functionality in every filter. For example,

• Many filters will change the content, invalidating existing content tags,
checksums, hashes, and lengths.

• Filters that require an entire, unbroken response in input need to ensure they don't
get byteranges from a backend.

• Filters that transform output in a filter need to ensure they don't violate a Cache-
Control: no-transform header from the backend.

• Filters may make responses uncachable.

mod_filter aims to offer generic handling of these details of filter implementation,
reducing the complexity required of content filter modules. At the same time, mod_filter
should not interfere with a filter that wants to handle all aspects of the protocol. By

Copyright © 2005 Nick Kew (niq@apache.org)

default (i.e. in the absence of any explicit instructions), mod_filter will leave the headers
untouched.

Thus, filter developers have two options. If we handle all protocol considerations within
our filter, then it will work with any Apache 2.x. However, if we are not concerned with
backwards compatibility, we can dispense with this and leave it to mod_filter. One
danger with this approach, however, is that (at the time of writing) mod_filter's protocol
handling is considered experimental: we must be prepared to test it, and if necessary to
maintain it in future.

The API for filter protocol handling is simple. The protocol is defined in a bitfield
(unsigned int), which is passed as an argument when the filter is registered (in function
ap_register_output_filter_protocol), or later in function ap_filter_protocol.

Currently supported bits are:

• AP_FILTER_PROTO_CHANGE - filter changes the contents (thus invalidating
checksums, etc.)

• AP_FILTER_PROTO_CHANGE_LENGTH - filter changes the length of the contents

• AP_FILTER_PROTO_NO_BYTERANGE - filter requires complete input and cannot
work on byte ranges

• AP_FILTER_PROTO_NO_PROXY - filter cannot run in a proxy (e.g. Makes changes
that would violate mandatory HTTP requirements in a proxy)

• AP_FILTER_PROTO_NO_CACHE - filter output is non-cacheable, even if the input
was cacheable

• AP_FILTER_PROTO_TRANSFORM - filter is incompatible with "Cache-Control: no-
transform"

Example: Filtering text by direct manipulation of buckets.

Our first filter example is a simple filter that manipulates buckets directly. It passes data
straight through, but transforms it by manipulating pointers.

The purpose of this module is to display plain text files as HTML, prettified and having a
site header and footer. So what the module has to do is:

• add a header at the top

• add a footer at the bottom

• escape the text as required by HTML.

The header and footer are files specified by the system administrator responsible for the
site.

Copyright © 2005 Nick Kew (niq@apache.org)

Bucket functions

First, we introduce two functions to deal with the data insertions: one for the files, one for
the simple entity replacements.

Creating a File bucket requires an open filehandle and a byte range within the file. Since
we're transmitting the entire file, we just stat its size to set the byte range. We open it with
a shared lock and with sendfile enabled for maximum performance.

static apr_bucket* txt_file_bucket(request_rec* r, const char* fname) {
 apr_file_t* file = NULL ;
 apr_finfo_t finfo ;
 if (apr_stat(&finfo, fname, APR_FINFO_SIZE, r->pool)

!= APR_SUCCESS) {
 return NULL ;
 }
 if (apr_file_open(&file, fname,

APR_READ|APR_SHARELOCK|APR_SENDFILE_ENABLED,
 APR_OS_DEFAULT, r->pool) != APR_SUCCESS) {
 return NULL ;
 }
 if (! file) {
 return NULL ;
 }
 return apr_bucket_file_create(file, 0, finfo.size, r->pool,
 r->connection->bucket_alloc) ;
}

Creating the simple text replacements, we can just make a bucket of a string. By making
the strings static, we avoid having to worry about their lifetime.

static apr_bucket* txt_esc(char c, apr_bucket_alloc_t* alloc) {
 static const char* lt = "<" ;
 static const char* gt = ">" ;
 static const char* amp = "&" ;
 static const char* quot = """ ;
 switch (c) {
 case '<': return apr_bucket_immortal_create(lt, 4, alloc) ;
 case '>': return apr_bucket_immortal_create(gt, 4, alloc) ;
 case '&': return apr_bucket_immortal_create(amp, 5, alloc) ;
 case '"': return apr_bucket_immortal_create(quot, 6, alloc) ;
 default: return NULL ; /* shut compilers up */
 }
}

The Filter

Now the main filter itself is broadly straightforward, but there are a number of interesting
and unexpected points to consider. Since this is a little longer than the above utility

Copyright © 2005 Nick Kew (niq@apache.org)

functions, we'll comment it inline instead.

The txt_cfg struct used here is the module's configuration, and just contains filenames
for the header and footer. Since that may be used concurrently by many threads, we
access it as read-only and use a second - private - txt_ctxt object to maintain our own
state:

typedef struct txt_cfg {
 const char* head ;
 const char* foot ;
} txt_cfg ;
typedef struct txt_ctxt {
 int state ;
 const char* head ;
 const char* foot ;
} txt_ctxt ;

static int txt_filter(ap_filter_t* f, apr_bucket_brigade* bb) {
 apr_bucket* b ;
 txt_ctxt* ctxt = f->ctx ;

 if (ctxt == NULL) {
 txt_cfg* cfg = ap_get_module_config(r->per_dir_config, &txt_module)
;
 ctxt = f->ctx = apr_pcalloc(f->r->pool, sizeof(txt_ctxt)) ;
 ctxt->head = cfg->head ;
 ctxt->foot = cfg->foot ;
 }

Main Loop: This construct is typical for iterating over the incoming data

 for (b = APR_BRIGADE_FIRST(bb);
 b != APR_BRIGADE_SENTINEL(bb);
 b = APR_BUCKET_NEXT(b)) {

 const char* buf ;
 size_t bytes ;

As in any filter, we need to check for EOS. When we encounter it, we insert the footer in
front of it. We shouldn't get more than one EOS, but just in case we do we'll note having
inserted the footer. This creates error-tolerance.

 if (APR_BUCKET_IS_EOS(b)) {
 /* end of input file - insert footer if any */
 if (ctxt->foot && ! (ctxt->state & TXT_FOOT)) {
 ctxt->state |= TXT_FOOT ;
 APR_BUCKET_INSERT_BEFORE(b, txt_file_bucket(r, ctxt->foot));
 }

The main case is a bucket containing data, We can get it as a simple buffer with its size

Copyright © 2005 Nick Kew (niq@apache.org)

in bytes:

 } else if (apr_bucket_read(b, &buf, &bytes, APR_BLOCK_READ)
 == APR_SUCCESS) {
 /* We have a bucket full of text. Just escape it
 * where necessary

 */
 size_t count = 0 ;
 const char* p = buf ;

Now we can search for characters that need replacing, and replace them

 while (count < bytes) {
 size_t sz = strcspn(p, "<>&\"") ;
 count += sz ;

Here comes the tricky bit: replacing a single character inline.

 if (count < bytes) {

 /* split off buffer at the character */
 apr_bucket_split(b, sz) ;

 /* skip over the before-buffer (where nothing changes) */
 b = APR_BUCKET_NEXT(b) ;

 /* insert the replacement for the character */
 APR_BUCKET_INSERT_BEFORE(b, txt_esc(p[sz],
 f->r->connection->bucket_alloc)) ;

 /* split off the char we just replaced */
 apr_bucket_split(b, 1) ;

 /* ... and remove it */
 APR_BUCKET_REMOVE(b) ;

 /* Move cursor on to what-remains, so it stays
 * in sequence with the main loop.
 */

 b = APR_BUCKET_NEXT(b) ;
 /* Finally, increment our counters */

 count += 1 ;
 p += sz + 1 ;
 }
 }
 }
 }

Now we insert the Header if it hasn't already been inserted.

Note that:

Copyright © 2005 Nick Kew (niq@apache.org)

• this has to come after the main loop – otherwise, the header itself would get
parsed and HTML-escaped

• it works because we can insert a bucket anywhere in the brigade, and in this case
put it at the head

• as with the footer, we save state to avoid inserting it more than once.

 if (ctxt->head && ! (ctxt->state & TXT_HEAD)) {
 ctxt->state |= TXT_HEAD ;
 APR_BRIGADE_INSERT_HEAD(bb, txt_file_bucket(r, ctxt->head));
 }

Note that we created a new bucket every time we replaced a character. Couldn't we have
prepared four buckets in advance - one for each of the characters to be replaced - and then
re-used them whenever the character occurred?

The problem here is that each bucket is linked to its neighbours. So if we re-use the same
bucket, we lose the links, so that the brigade now jumps over any data between the two
instances of it. Hence we do need a new bucket every time. That means this technique
becomes inefficient when a high proportion of input data has to be changed.

Now we've finished manipulating data, we just pass it down the filter chain.

 return ap_pass_brigade(f->next, bb) ;
}

mod_txt was written one idle afternoon, after someone had asked on IRC whether such a
module existed. It seemed such an obvious thing to do, and a great example to use here.
Working with buckets and brigades is one of the hardest parts of the Apache API, and it
needs such a simple demonstrator module!

Example 2: an input filter and the PULL API

Example 3: Using external libraries and the stdio-like API

Copyright © 2005 Nick Kew (niq@apache.org)

