Shale and the
Java Persistence Architecture

Craig McClanahan
Gary Van Matre

ApacheCon US 2006
Austin, TX



» The Apache Shale Framework

» Java Persistence Architecture

» Design Patterns for Combining Frameworks
» Questions and Answers



» Architected as extensions to the JavaServer

Faces controller framework
» Key functional components:
» View controller (application callbacks)
» Dialog manager (scoped conversations)
» Clay plug-in (alternate view handler)
> Tiger extensions (annotations based config)
» Remoting (AJAX back end support)
» Struts compatibility functionality:
> Tiles, Validator, Token



» For our purposes, View Controller is the key
touchpoint between the frameworks
+ Based on JSF convention of “backing beans”

» Four application oriented callbacks:
* init() -- called when view is created or restored
» preprocess() -- called when about to process a
postback
» prerender() -- called when about to render this view
» destroy() -- called after rendering, if init() was called
» Also supports init/destroy lifecycle events for

request/session/application scoped data beans

4



> Questions about backing beans (and view
controllers):
» Where is the business logic?

» How is the model tier accessed?
» We will look into options after we explore JPA ...



» Part of JSR-220 (Enterprise JavaBeans 3.0)

» Began as a simplification to entity beans

» Evolved into POJO based persistence technology:
» Rich modelling capabilities, inheritance, polymorphism
» Standardized object/relational mapping
» Powerful query capabilities

» Scope expanded at the request of the community:
> |nto persistence technology for Java EE
» To support out-of-container use is Java SE
» To support pluggable persistence providers



» Entities
» Persistence Units
» Persistence Contexts



> Plain old Java objects:

> No required interfaces

» Created using new Foo()

» Support inheritance, polymorphism

» Have persistent identity

» May have both persistent and non-persistent state
» Usable outside the container:

» Serializable
» Can be used as a detached object



> Queryable via Java Persistence query
language
o Similar to SQL, but extended for O/R mapping

» Dynamically constructed query strings
» Named Queries embedded in entity classes
» Managed at runtime through the Entity

Manager APls



@Entity
public class Customer ({

@Id private long id;
private String name; // Non-persistent data

@OneToMany List<Order> orders = new ArrayList();
public List<Order> getOrders() { return orders; }

public void addOrder (Order order) {
getOrders () .add (order) ;

}

10



» Unit of persistence packaging and deployment
» Set of managed classes:
» Entities

» Related classes (primary keys, etc.)
» Defines scope for:

» Queries

» Entity relationships
» Object/relational mapping information:

» Java language annotations and/or XML files
» Configuration information for provider:

» META-INF/persistence.xml file

11



» Sample persistence.xml (shale-mailreader-jpa):

<persistence version="1.0"
xmlns="http://java.sun.com/xml/ns/persistence">
<persistence-unit name='"MailReaderJpa"
transaction-type="RESOURCE LOCAL">
<provider>oracle.toplink.essentials.ejb.cmp3.
EntityManagerFactoryProvider</provider>
<non-jta-data-source>jdbc/mailreader
</non-jta-data-source>
<properties>
<property name="toplink.ddl-generation"
value="create-tables"/>
</properties>
</persistence-unit>
</persistence>

12



» Runtime application execution context

» Set of managed bean instances, belonging to
a single persistence unit:
» Entities that have been read from the database
» Entities that will be written to the database

* |ncluding newly persistent entities
» Persistent entity identity == Java identity
» Persistence context lifetime is either:
» Single transaction scoped
» Extended — spanning multiple transactions

13



» Managed by either container or application
» Container managed persistence contexts:
> Provide ease of use in Java EE environment

» Propogated across components if using JTA
> Obtained by injection or JNDI lookup
» May be single-transaction or extended
» Application managed persistence contexts:
» Use in either Java SE or Java EE environment
» Obtained from EntityManagerfFactory
» Extended scope must be managed by app also
» Web tier supports both approaches

14



» Entity lifecycle operations:
> persist(), remove(), refresh(), merge()
» Finder operations:

> find() (by primary key), getReference()
» Factory for query objects:
» createQuery(), createNamedQuery(),
createNativeQuery()
» Operations to manage persistence context:
» Flush(), clear(), close(), getTransaction(),
joinTransaction()

15



@PersistenceContext
private EntityManager em;

public Order addNewOrder (Customer

Order order = new Order (prod) ;
cust.addOrder (order) ;
em.persist (order) ;

return order;

cust, Product prod) {

16



@PersistenceContext
private EntityManager em;

public void dropCustomer (long custId) {

Customer cust = em.find (Customer.class, custId);
em.remove (cust) ;

17



» Factory for EntityManager instances
> CreateEntityManager()
» Allows pluggable replacement of JPA
implementation in Java SE environment
» Container will have picked a particular implementation
* |njectable via @PersistenceUnit annotation

18



» Resource injection:
» Applies to container-managed persistence contexts only
» Performs annotation based dependency injection ...
°» @PersistenceContext, @PersistenceUnit, ...
> On container-created objects only:
o Servlet, Filter, Listener, JSF Managed Bean
o Alternatives: JNDI lookup, Spring, programmatic access
» Thread safety:
» EntityManager instance is not thread safe
» EntityManagerFactory is thread safe

19



» Three basic patterns for integrating Shale/JSF and JPA:
» “All in one™” backing bean
» POJO based business logic
» Session EJB based business logic
> Plus a more radical alternative (JBoss Seam):
» Backing bean is a stateful session bean

20



» Combines model access and business logic directly

into backing bean class
» Suitable when required logic is extremely simple

» Characteristics:
» EntityManager instance injected by container
> Therefore, must be request scoped for thread safety
» Event handler performs required data access

» Example: user login authentication

21



public class LogonBean ({

// EntityManager is injected by the container
@PersistenceContext EntityManager em;

// Properties for username/password (bound to components)
private String username;
public String getUsername () { return username; }
public void setUsername (String username)
{ this.username = username; }

private String password;
public String getPassword() { return password; }
public void setPassword(String password)

{ this.password = password; }

22



// Action method bound to submit button

public String authenticate() {
try {

Query query = em.createQuery
(“select User u from Users where u.username =" +
“:username and u.password = :password”);
em.createNamedQuery (“"User. findByUsernamePassword”) ;

query.setParameter (“username”, username) ;
query.setParameter (“password”, password) ;
User user = (User) query.getSingleResult()

store user in session to denote logged in status
return “success”;
catch (NoResultException e) ({

store error message to be redisplayed
return null; // Redisplay current page

14

23



» Often, business logic (and model tier access) is:
» Nontrivial

» Reusable
» Standard design pattern is to encapsulate in a
separate Java class:
> |[n Java-based apps, often a POJO
» |[n webapps, typically stored in application scope
» So, must deal with multithreaded access
» Let's look at such a business logic bean first ...

24



public class Logic {

// EntityManagerFactory is injected by the container
@PersistenceUnit EntityManagerFactory emf;

// Typical business logic method

public Subscription createSubscription (Subscription subs) {
EntityManager em = emf.createEntityManager () ;

EntityTransaction et = null;
try {

et = em.getTransaction(); et.begin();

User user = em.find (User.class,
user.addSubscription (subs) ;

em.persist(subs); et.commit;
} catch (Exception e) ({
} finally {

subs.getUser () .getId() ;

if ((et '= null) && et.isActive()) { et.rollback();, }

em.close() ;

25



+ JSF can inject an instance of the business logic
bean into backing beans for you as well:
» Define a “logic” property of type Logic
» Configure the business logic managed bean:

<managed-bean>
<managed-bean-name>backing</managed-bean-name>
<managed-bean-class>. . .<managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>
<managed-property>
<property-name>logic</property-name>
<value>#{logic}</value>
</managed-property>
</managed-bean>

» Thus, backing beans have direct access to logic

26



* |[n our business logic bean, we had to deal with
transactions explicitly
» Consider using a stateless session bean (EJB)
» Transactions managed by the container
» Also get other benefits:
> No more thread safety concerns
> Scalability (across server instances)
» Participate in cross-resource transactions

» What adjustments would we have to make to our
POJO example?

27



» Define a business interface for our logic:
public interface BusinessLogic{ ... }
» Make our logic class implement the interface ...
» And add simple annotations:
@Local @Stateless
public class Logic implements BusinessLogic ...
> And we have just created a stateless session bean
which can be injected into our backing beans:
@EJB private Logic logic;
> We now have direct access to business methods

28



» We won't have time to delve into all the detalils ...
» But Seam offers an interesting alternative:
» Combine backing bean and business logic bean into one
* Theory: the “reusable” business logic isn't always reusable

» Theory: the backing bean's logic is just glue

» While we are at it, we can use stateful session bean
» Maintain conversational state across HT TP requests ...
» Using the EJB container instead of HT TP sessions

29



» Binding Ul component values:
» Typical pattern: bind to properties of backing bean
» In Struts, this would have been the form bean

» Result: lots of copying values back and forth
» |nstead, make a JPA entity class a property of your
backing bean, and bind to it directly
» Passing state between requests:
» Typical pattern: pass primary keys around
» Alternative: JPA entity instances can be detached and
sent along with the JSF component state

30



» Creating bookmarkable URLSs:
» Shale's ViewController callbacks can help here
» Two different HTTP accesses are supported:
o GET: init() --> prerender() --> destroy()
o POST: init() --> preprocess() --> action method --> prerender() --

> destroy()
» Can also access request parameters for keys
> We will see a worked out demonstration shortly

31



Demo

32



» Congrats to Walied Amer, logo contest winner

33



Questions and Answers

34



