
1

Shale and the
Java Persistence Architecture

Craig McClanahan
Gary Van Matre

ApacheCon US 2006
Austin, TX

2

AgendaAgenda

The Apache Shale Framework
Java Persistence Architecture
Design Patterns for Combining Frameworks
Questions and Answers

3

The Apache Shale FrameworkThe Apache Shale Framework

Architected as extensions to the JavaServer
Faces controller framework
Key functional components:

View controller (application callbacks)
Dialog manager (scoped conversations)
Clay plug-in (alternate view handler)
Tiger extensions (annotations based config)
Remoting (AJAX back end support)
Struts compatibility functionality:

Tiles, Validator, Token

4

View ControllerView Controller

For our purposes, View Controller is the key
touchpoint between the frameworks
Based on JSF convention of “backing beans”
Four application oriented callbacks:

init() -- called when view is created or restored
preprocess() -- called when about to process a
postback
prerender() -- called when about to render this view
destroy() -- called after rendering, if init() was called

Also supports init/destroy lifecycle events for
request/session/application scoped data beans

5

View Controller and Model TierView Controller and Model Tier

Questions about backing beans (and view
controllers):

Where is the business logic?
How is the model tier accessed?

We will look into options after we explore JPA ...

6

Java Persistence ArchitectureJava Persistence Architecture

Part of JSR-220 (Enterprise JavaBeans 3.0)
Began as a simplification to entity beans
Evolved into POJO based persistence technology:

Rich modelling capabilities, inheritance, polymorphism
Standardized object/relational mapping
Powerful query capabilities

Scope expanded at the request of the community:
Into persistence technology for Java EE
To support out-of-container use is Java SE
To support pluggable persistence providers

7

JPA – Key ConceptsJPA – Key Concepts

Entities
Persistence Units
Persistence Contexts

8

JPA – EntitiesJPA – Entities

Plain old Java objects:
No required interfaces
Created using new Foo()
Support inheritance, polymorphism
Have persistent identity
May have both persistent and non-persistent state

Usable outside the container:
Serializable
Can be used as a detached object

9

JPA – EntitiesJPA – Entities

Queryable via Java Persistence query
language

Similar to SQL, but extended for O/R mapping
Dynamically constructed query strings
Named Queries embedded in entity classes

Managed at runtime through the Entity
Manager APIs

10

JPA – Entity ClassesJPA – Entity Classes

@Entity
public class Customer {
 @Id private long id;
 private String name; // Non-persistent data
 @OneToMany List<Order> orders = new ArrayList();
 public List<Order> getOrders() { return orders; }
 public void addOrder(Order order) {
 getOrders().add(order);
 }
}

11

JPA – Persistence UnitJPA – Persistence Unit

Unit of persistence packaging and deployment
Set of managed classes:

Entities
Related classes (primary keys, etc.)

Defines scope for:
Queries
Entity relationships

Object/relational mapping information:
Java language annotations and/or XML files

Configuration information for provider:
META-INF/persistence.xml file

12

JPA – Persistence UnitJPA – Persistence Unit

Sample persistence.xml (shale-mailreader-jpa):

<persistence version="1.0"
xmlns="http://java.sun.com/xml/ns/persistence">

 <persistence-unit name="MailReaderJpa"
 transaction-type="RESOURCE_LOCAL">
 <provider>oracle.toplink.essentials.ejb.cmp3.
 EntityManagerFactoryProvider</provider>
 <non-jta-data-source>jdbc/mailreader
 </non-jta-data-source>
 <properties>
 <property name="toplink.ddl-generation"
 value="create-tables"/>
 </properties>
 </persistence-unit>
</persistence>

13

JPA – Persistence ContextJPA – Persistence Context

Runtime application execution context
Set of managed bean instances, belonging to
a single persistence unit:

Entities that have been read from the database
Entities that will be written to the database

Including newly persistent entities
Persistent entity identity == Java identity

Persistence context lifetime is either:
Single transaction scoped
Extended – spanning multiple transactions

14

JPA – Persistence ContextsJPA – Persistence Contexts

Managed by either container or application
Container managed persistence contexts:

Provide ease of use in Java EE environment
Propogated across components if using JTA
Obtained by injection or JNDI lookup
May be single-transaction or extended

Application managed persistence contexts:
Use in either Java SE or Java EE environment
Obtained from EntityManagerFactory
Extended scope must be managed by app also

Web tier supports both approaches

15

JPA – EntityManager APIJPA – EntityManager API

Entity lifecycle operations:
persist(), remove(), refresh(), merge()

Finder operations:
find() (by primary key), getReference()

Factory for query objects:
createQuery(), createNamedQuery(),
createNativeQuery()

Operations to manage persistence context:
Flush(), clear(), close(), getTransaction(),
joinTransaction()

16

JPA – Persisting an EntityJPA – Persisting an Entity

@PersistenceContext
private EntityManager em;
...
public Order addNewOrder(Customer cust, Product prod) {
 Order order = new Order(prod);
 cust.addOrder(order);
 em.persist(order);
 return order;
}

17

JPA – Removing an EntityJPA – Removing an Entity

@PersistenceContext
private EntityManager em;
...
public void dropCustomer(long custId) {
 Customer cust = em.find(Customer.class, custId);
 em.remove(cust);
}

18

JPA – EntityManagerFactoryJPA – EntityManagerFactory

Factory for EntityManager instances
CreateEntityManager()

Allows pluggable replacement of JPA
implementation in Java SE environment

Container will have picked a particular implementation
Injectable via @PersistenceUnit annotation

19

JPA – Other IssuesJPA – Other Issues

Resource injection:
Applies to container-managed persistence contexts only
Performs annotation based dependency injection ...

@PersistenceContext, @PersistenceUnit, ...
On container-created objects only:

Servlet, Filter, Listener, JSF Managed Bean
Alternatives: JNDI lookup, Spring, programmatic access

Thread safety:
EntityManager instance is not thread safe
EntityManagerFactory is thread safe

20

Overall Design PatternsOverall Design Patterns

Three basic patterns for integrating Shale/JSF and JPA:
“All in one” backing bean
POJO based business logic
Session EJB based business logic

Plus a more radical alternative (JBoss Seam):
Backing bean is a stateful session bean

21

““All In One” Backing BeanAll In One” Backing Bean

Combines model access and business logic directly
into backing bean class
Suitable when required logic is extremely simple
Characteristics:

EntityManager instance injected by container
Therefore, must be request scoped for thread safety
Event handler performs required data access

Example: user login authentication

22

““All In One” Backing BeanAll In One” Backing Bean

public class LogonBean {
 // EntityManager is injected by the container
 @PersistenceContext EntityManager em;
 // Properties for username/password (bound to components)
 private String username;
 public String getUsername() { return username; }
 public void setUsername(String username)
 { this.username = username; }
 private String password;
 public String getPassword() { return password; }
 public void setPassword(String password)
 { this.password = password; }
 ...

23

““All In One” Backing BeanAll In One” Backing Bean

 // Action method bound to submit button
 public String authenticate() {
 try {
 Query query = em.createQuery
 (“select User u from Users where u.username =” +
 “:username and u.password = :password”);
 em.createNamedQuery(“User.findByUsernamePassword”);
 query.setParameter(“username”, username);
 query.setParameter(“password”, password);
 User user = (User) query.getSingleResult();
 ... store user in session to denote logged in status ...
 return “success”;
 } catch (NoResultException e) {
 ... store error message to be redisplayed ...
 return null; // Redisplay current page
 }
 }
}

24

POJO Based Business LogicPOJO Based Business Logic

Often, business logic (and model tier access) is:
Nontrivial
Reusable

Standard design pattern is to encapsulate in a
separate Java class:

In Java-based apps, often a POJO
In webapps, typically stored in application scope
So, must deal with multithreaded access

Let's look at such a business logic bean first ...

25

POJO Based Business LogicPOJO Based Business Logic

public class Logic {
 // EntityManagerFactory is injected by the container
 @PersistenceUnit EntityManagerFactory emf;
 // Typical business logic method
 public Subscription createSubscription(Subscription subs) {
 EntityManager em = emf.createEntityManager();
 EntityTransaction et = null;
 try {
 et = em.getTransaction(); et.begin();
 User user = em.find(User.class, subs.getUser().getId();
 user.addSubscription(subs);
 em.persist(subs); et.commit;
 } catch (Exception e) { ...
 } finally {
 if ((et != null) && et.isActive()) { et.rollback(); }
 em.close();
 }
 }
}

26

POJO Based Business LogicPOJO Based Business Logic

JSF can inject an instance of the business logic
bean into backing beans for you as well:

Define a “logic” property of type Logic
Configure the business logic managed bean:
<managed-bean>
 <managed-bean-name>backing</managed-bean-name>
 <managed-bean-class>...<managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>logic</property-name>
 <value>#{logic}</value>
 </managed-property>
</managed-bean>

Thus, backing beans have direct access to logic

27

Session Bean Business LogicSession Bean Business Logic

In our business logic bean, we had to deal with
transactions explicitly

Consider using a stateless session bean (EJB)
Transactions managed by the container

Also get other benefits:
No more thread safety concerns
Scalability (across server instances)
Participate in cross-resource transactions

What adjustments would we have to make to our
POJO example?

28

Session Bean Business LogicSession Bean Business Logic

Define a business interface for our logic:
public interface BusinessLogic { ... }

Make our logic class implement the interface ...
And add simple annotations:

@Local @Stateless
public class Logic implements BusinessLogic ...

And we have just created a stateless session bean
which can be injected into our backing beans:

@EJB private Logic logic;
We now have direct access to business methods

29

The JBoss Seam AlternativeThe JBoss Seam Alternative

We won't have time to delve into all the details ...
But Seam offers an interesting alternative:

Combine backing bean and business logic bean into one
Theory: the “reusable” business logic isn't always reusable
Theory: the backing bean's logic is just glue

While we are at it, we can use stateful session bean
Maintain conversational state across HTTP requests ...
Using the EJB container instead of HTTP sessions

30

Other Design NotesOther Design Notes

Binding UI component values:
Typical pattern: bind to properties of backing bean

In Struts, this would have been the form bean
Result: lots of copying values back and forth

Instead, make a JPA entity class a property of your
backing bean, and bind to it directly

Passing state between requests:
Typical pattern: pass primary keys around
Alternative: JPA entity instances can be detached and
sent along with the JSF component state

31

Other Design NotesOther Design Notes

Creating bookmarkable URLs:
Shale's ViewController callbacks can help here
Two different HTTP accesses are supported:

GET: init() --> prerender() --> destroy()
POST: init() --> preprocess() --> action method --> prerender() --
> destroy()

Can also access request parameters for keys
We will see a worked out demonstration shortly

32

Demo

33

Today's NewsToday's News

Shale has a brand new logo image:

And a “powered by” logo:

Congrats to Walied Amer, logo contest winner

34

Questions and Answers

