
How to make patches
and influence projects



“Committers get all the attention on a project, 
but there is a huge amount that non-

committers can do even without that elusive 
commit karma. In this session we cover various 

strategies that can be applied to make a 
difference to an open source project, either to 

bring a dormant project back to life or to 
prove yourself the ideal committer. “



“The future belongs to crowds”
Don DeLillo, Mao II

(Aaron Lynch, Thought Contagion)



This is really all about contributing to crowds.



Why Contribute?

• To stop maintaining your own version

• Get opinions on your changes

• Increase your experience

• To become a member of the crowd

• It feels good :)



The Contribution 
Conversation

• Discovery

• Reporting

• Discussion

• Commit



Discovery

• got a question

• found a new bug

• created an improvement

• wished for a feature

• browsed the issue tracker

You’ve:



a.k.a The Itch

• An itch is your internal customer.

• Creates high enjoyment for contributors, 
you have a high speed feedback between 
requirement and effect.



Faking the itch

• Think beyond yourself - what does your 
family need, or your team at work. It is easy 
to pick up a shared itch, and more fun to 
subsequently work on.

• Alternatively, identify something you like that 
has a tiny bug, or a simple improvement that 
would help. Be selfish.

• Find bugs.



Finding Bugs (easy)

• Test the build system.

• Consider a quality checking tool - but only 
pick the high value items. Most of it is noise.

• Investigate the code coverage.



Finding Bugs (hard)

• Load test the program - donate this code.

• Write an extension, and identify the design 
pains you find.

• Dig into the sticky bugs that are littering the 
project’s issue tracker.



Verify the bug

• Ask on IRC

• Look at user@ archives

• Search the issue tracker



Bug reporting anti-
pattern #1

• Only reporting a bug to the mailing list

• Mail goes stale in a week, the issue tracker 
lasts for years.

• Use the issue tracker for the bug and the 
mailing list to raise awareness.



Bug reporting anti-
pattern #2

• Linking the bug to a forum entry.

• Issues should be atomic.

• If a long forum thread already exists, then 
summarize in the issue.



Bug reporting anti-
pattern #3

• Logs/stack traces that go on for miles. 

• Not even for StackOverflowErrors.

• Attach a file to the issue instead.



Complete the sentence

• Larry Wall, creator of P____



Complete the sentence

• Larry Wall, creator of Patch



Creating a patch

• Bugfixing is surgery, not remodelling. 

• What is it a patch of, and where?

• Create your patch in the root of the project

• Two patches - one for the proof and one for 
the fix



Creating a patch

• ‘svn diff > BUG-ID.patch’

• Revert the patch, then:

• ‘patch -p0 < BUG-ID.patch’

• Repeat your testing.



Being persistent

• Don’t let your issue get forgotten.

• Pester lightly.

• You’re making sure you’ve not been 
forgotten, not trying to dictate priority



Dealing with silence

• Open source projects are developed as a 
series of controlled bursts of energy.

• Silence can just indicate a project is in 
between bursts.

• Or the project could be dead.



Rejuvenating the 
conversation

• Whether rejuvenating or kicking off a new 
burst of development, the solution is the 
same. 

• Open source is conversation. 

• Get people involved.

• Activity begets activity.



Enter the conversation

• Begin by building up a collection of patches.

• Gains you respect.

• Gets the ball rolling.

• Activity begets activity.



Propose a release cycle

• Use the Wiki to build a release plan

• Break the list of issues into sizeable 
chunks (7 of 7s)

• For each, have title, link and your 
comment or suggested action



Repeat

• Methodically work through the list

• Leave some easy issues, seek both help and 
consensus on the hard issues



Help get a release out

• Even if you’re not a committer, make sure to 
give your opinion on whether the release is 
ready or not.

• Test the release, QA the website.

• Check the download:

• The md5, the pgp and make sure the 
source actually builds.



When to give up?

• If you are steadily applying the above, with a 
professional and patient attitude, then you 
should get a response from the community.

• If you don’t, it means the project is stagnant 
(either because it’s dead, or intentionally has 
no desire to move).



What to do then?

• Fork the project. 

• Either privately or publicly. 

• Make sure you comply with the license and 
the trademark.



Other ways to 
contribute

• Blog about your use of the project.

• Write tips on the project.

• Suggest improvements to the website.

• Fill in Javadoc (dull)

• Turn your blog tips into a tutorial as you 
gain in confidence.



Organize others

• Take user bugs to the issue tracker

• Act as a middleman between user@ and 
dev@

• Use private emails as a way to gently nudge 
for activity.



Legal

• Contributing gives value, gives Intellectual 
Property. Whose IP are you contributing?

• Be aware of the legalities involved. What is 
the license you are contributing under?

• Is there a CLA? Or a code grant of some 
kind?

• What does your employer contract say?



Conversation summary

• Mailing list is the best way to be heard

• Issue tracker is the best way to not be 
forgotten

• IRC is the best way to get an answer quickly

• Making things happen is a balance of these 
mediums



Rejuvenation summary

• Activity begets activity.

• Patience - communities have high inertia, you 
have to be the tortoise not the hare.



Contribution summary

• Bugfixes are surgery.

• Be politely persistent.

• Bug reporting is a market for people’s time, a 
bad bug report won’t get fixed. Create good 
reports.



To Read

• http://www.catb.org/~esr/faqs/smart-
questions.html

• http://www.apache.org/dev/
contributors.html

http://www.catb.org/~esr/faqs/smart-questions.html
http://www.catb.org/~esr/faqs/smart-questions.html
http://www.catb.org/~esr/faqs/smart-questions.html
http://www.catb.org/~esr/faqs/smart-questions.html
http://www.apache.org/dev/contributors.html
http://www.apache.org/dev/contributors.html
http://www.apache.org/dev/contributors.html
http://www.apache.org/dev/contributors.html


Thank you for listening.



For the latest slides:
http://www.yandell.org/henri/H2MPIP.pdf

http://www.yandell.org/henri/H2MPIP.pdf
http://www.yandell.org/henri/H2MPIP.pdf

