
From A(valon) to O(SGi)

The Future of Modular

(Web)Applications
Carsten Ziegeler Felix Meschberger
cziegeler@apache.org fmeschbe@apache.org

Day Software Day Software

• Committer in some Apache Projects

– Jackrabbit, Felix, Sling

– PMC: Felix, Jackrabbit

About Felix Meschberger

– PMC: Felix, Jackrabbit

• Core Developer at Day Software

• Apache Software Foundation Member

– Cocoon, Excalibur, Pluto, Felix, Incubator,

Sling, Sanselan

About Carsten Ziegeler

Sling, Sanselan

– PMC: Cocoon, Incubator, Portals, Felix,

Excalibur (Chair)

• Senior Developer at Day Software

• Article/Book Author, Technical Reviewer

• JSR 286 spec group (Portlet API 2.0)

• A plethora of “component”/”service”

frameworks

– Making the right decision...

Foreword

– Making the right decision...

• Focus on the components – not the

framework

• We’ll go from Α to Ω (Avalon to OSGi)

– Basic concepts over details

• Background: General Concepts of COP

• Past: Apache Avalon

• Present: OSGi and Apache Felix

Agenda

• Present: OSGi and Apache Felix

• Future: Spring and Apache Sling

• Summary

GENERAL CONCEPTS OF COP

Managing Large Systems

• Modularization

– Improved quality / robustness

– Team work

Managing Complexity

– Team work

– Easier problem location

– Aids deployment and maintenance

– Extensibility

– Dynamic systems

• Component oriented programming

• Consists of two parts

– Service/Role (offered functionality) –

(Java)Interface

A Component

(Java)Interface

– (Java)Implementation

• Client knows only about service/role

– Behaviour

• Separation of concerns

• Managed by a container

• Manages components

– Central repository

– Central configuration

Component Container

– Central configuration

– Connects services with implementations

• Usually through dependency injection

• Favours loose coupling

• Makes implementation replacement easy

– Even at runtime

Dependency Injection

– Even at runtime

• Breaks the dreaded “everything depends on

everything” problem

Application Component Container

IMPL

Container

Config
Parser

Application Architecture

Looks up
Scheduler

IMPL

IMPL

Uses
Scheduler

• Everything is managed by the container

– Creation of components

– Configuration/Initialization of a component

IoC = Inversion of Control

– Configuration/Initialization of a component

– Component lifecycle

– Destruction of components

• Simple but effective pattern for

development
Component Container

Config

Pool

of

Components

Controls

• Required information is passed using setter

methods

– Configuration

IoC – Setter Injection

All setters have to be

called before the

component can be

Sample: Scheduler

public class SchedulerImpl implements Scheduler {

public void setParser(SAXParser parser) { ... }
public void setConfigFile (String path) { ... }

}

– Configuration

– Other Components
component can be

used!

• Required information is passed in

constructor

– Configuration

IoC – Constructor Injection

Constructors can
get complex and

ambiguous!
– Configuration

– Other Components
Sample: Scheduler (“Good Citizens”)

public class SchedulerImpl implements Scheduler {

public SchedulerImpl (SAXParser parser, String path) { ... }
}

ambiguous!

• Information is passed using special

interfaces
Sample: Scheduler

IoC – Interface Injection

public class SchedulerImpl

implements Scheduler, Serviceable, Configurable{

public void service(ServiceManager manager) {
LOOKUP PARSER

}

public void configure(Configuration conf) {
GET FILENAME

}
}

Dependency to the
Container

Framework!

"The choice between Service

Locator [Interface Injection]and

Dependency Injection is less

important than the principle of

Inversion of Control – Use It!

important than the principle of

separating service configuration

from the use of services within an

application.“

Martin Fowler

(http://martinfowler.com/articles/injection.html)

• A good container should

– be as invisible as possible

– not impose restrictions on the components

Flexibility and Modularity

– not impose restrictions on the components

– offer an API for registering components

• Modularity

– Updates of (sets of) components

– Changes during runtime

– Classloader management

Motivation

"If you ever worked with Avalon,

you know the feeling:

at first it doesn't make any sense

at all. It's a mess of stupid and at all. It's a mess of stupid and

very abstract interfaces...but

after a while, a pattern emerges

and it sticks."

Stefano Mazzocchi

ASF Member

THE APACHE AVALON

PROJECT

The Past

• Creation of a Java server framework

• Apache Initiative

• Reuse of code and components from the

History of Avalon

• Reuse of code and components from the

various Java Apache projects (1999)

• Later renamed to Avalon (at Jakarta)

• Renamed again to Excalibur ☺

• Top Level Project (excalibur.apache.org)

• Java based framework

– Interfaces, abstract classes, shared modules,

patterns

Original Goals

patterns

– Reusable components

– Shared code

• Web Server Development !

– Dynamic composition

– Optimized for multi-threaded environments

• Separating the application into common

Components

– Accessible using interfaces

Features

– Accessible using interfaces

– Different implementations

• Component lifecycle

• Central configuration

• Can be easily integrated with any J2EE

framework

• Interface injection for several concerns

• Service locator

• Constructor injection can be used

IoC in Avalon

• Constructor injection can be used

– For some aspects

• Setter injection can be used (config)

• Dynamic coupling of components

• IoC is combined with SoC ☺

- LogEnabled

- Contextualizable

Creation - Serviceable

- Configurable/Parameterizable

- Initializable

Instantiate

Configure

Component Lifecycle

Component Container

Destruction - Disposable

- SingleThreaded

Usage - ThreadSafe

- Poolable/Recyclable

Manage

Pool

Destroy

Config

Application (Client) ServiceManager

(org.apache.avalon.framework.service)

Parser

Service Manager/Container

XSLT
Proc
essor

File
Gene
rator

Object lookup(String role);

boolean hasService(String role);

void release(Object component);

Parser Role

package org.apache.excalibur.xml.sax;

import org.xml.sax.*;

public interface SAXParser

Component/Role Definition

public interface SAXParser
{

String ROLE = SAXParser.class.getName();

void parse(InputSource in, ContentHandler consumer)
throws SAXException;

}

• Importing the role Interface

• Looking up the role from the service

manager

Using a Component

manager

• Using the component

• Releasing the component

Pattern for using a Service Manager

import org.apache.excalibur.xml.sax.SAXParser;

import org.xml.sax.*;

public void parse(InputSource document)
{

Using a Component

{
SAXParser parser = (SAXParser) this.serviceManager.lookup(SAXParser.ROLE);
try {

parser.parse(document, this);

} catch (Exception ignore) {
} finally {

this.serviceManager.release(parser);
}

}

• Role = Component

– Parser, XSLT Processor, Session Manager

• Role = Set of components with common

Different Weights of a Role

• Role = Set of components with common

behaviour

– Store (Memory, Disk, MRU) , Media Handler

(gif, jpeg)

• Distinguished by the lookup role (role vs.

role/key)

<role-list>

<role name="org.apache.excalibur.xml.sax.SAXParser"

shorthand="xml-parser"

default-class="org.apache.excalibur.xml.impl.JaxpParser"/>

</role-list>

Role

(Interface)

Alias

Implementation

Configuration (Roles)

<components>
<xml-parser>

<parameter name="validate" value="false"/>
<parameter name="namespace-prefixes" value="false"/>
<parameter name="stop-on-warning" value="true"/>
<parameter name="stop-on-recoverable-error" value="true"/>

Configuration (Components)

<parameter name="stop-on-recoverable-error" value="true"/>
<parameter name="reuse-parsers" value="false"/>

</xml-parser>

</components>

Hard-coded alias (in roles file)

xml-parser <-> org.apache.excalibur.xml.Parser

• Dynamic component lookup/assembly

– Often needed for dynamic request/response

based systems

Avalon – The Server Framework

based systems

• Container hierarchy

– Modularization

– Security

Core Container

Sub
Container

Sub App A

Sub App B Sub App C

OSGI AND APACHE FELIX

The Present

• Formerly known as the Open Services

Gateway Initiative

• Specification of a framework

OSGi Alliance

• Specification of a framework

– Dynamic services

– Simple component model

– Component lifecycle management

– Service registration

– Uses the concept of bundles

• Leverages the Java packaging mechanism:

JAR file

• Contains Java classes and resources

An OSGi Bundle I

• Contains Java classes and resources

• Additional meta-data

– dependencies to other bundles

– package imports/exports

• Bundle Activator concept

– Custom object notified on bundle startup

• Can register services

An OSGi Bundle II

• Can register services

– and use other services

• Automatical wiring of bundles

• Solves many modularity problems of todays

(web)apps

• A bundle contains more than public

classes/API

– Well defined boundaries (packages)

Modularity Requirements I

– Well defined boundaries (packages)

• A bundle depends on other

classes/frameworks etc.

– Well defined dependencies (packages)

• A bundle has a version

– OSGi supports versioning and multi-versions

• Classpath for a bundle is generated by OSGi

Modularity Requirements II

• Classpath for a bundle is generated by OSGi

based on the above information

• OSGi offers an API to register services

– Service is registered by its interface name

– Implementation is bundle private

Services

– Implementation is bundle private

– Several components for same service possible

• Bundles can query services

– By interface name

– With additional filters

• Jar contains "just" code

– Additional configuration required

– Avalon, Spring

Configuration Styles

– Avalon, Spring

– Cocoon 2.1.x

• Jar contains code and configuration

– Automatic service registration

– OSGi, Spring + Cocoon Spring Configurator

– Cocoon 2.2

• Minimal but sufficient API for services

– Minimal overhead: Good for simple bundles

– Requires sometimes a lot of Java coding

The OSGi Core

– Requires sometimes a lot of Java coding

– No support for component management

– No support for configuration management

• Additional (optional) extensions

– Declarative Service Specification

– Configuration Admin Service Specification

• XML format for services

– Services, implementation and references

• Automatic registration on bundle startup

Declarative Service Specification

• Automatic registration on bundle startup

– Deregistration on bundle stop

• Usage is very straightforward

– Implementation

• requires set/unset methods for references

• might contain special (de)activation methods

• Central service for

– storing and delivering service configurations

– persistent storage

Configuration Admin Service

Spec

– persistent storage

• API for querying and changing

configurations

– services are updated

• XML meta data description for component

configuration

• Open source implementation of OSGi R4

– Framework (Core)

– Services (Compendium)

Apache Felix

– Services (Compendium)

• Package Admin, Start Level, Configuration Admin,

Declarative Services, Event Admin, Preferences

– Maven Plugins

– Shell and other config tools

– OSGi Bundle Repository (OBR)

• Creates a JAR which can be used as a

bundle

• Additional meta data

The Maven Bundle Plugin

• Additional meta data

– is calculated (as far as possible)

– can be specified in the pom

• Integrates nicely and seamlessly

• Generates descriptor files based on

annotations

– Component, service

The Maven SCR Plugin

– Component, service

– References

– Class enhancements for simpler usage

• Additional support for the configuration

admin

– Properties

• Maven 2

• Maven Bundle Plugin

• Maven SCR Plugin

Developing with Apache Felix

• Maven SCR Plugin

• (Maven OBR Plugin)

• Registering a servlet in a running OSGi

environment

• Using provided services

Example Service

• Using provided services

– LogService for logging

– HttpService for registering servlets

Servlet Service I
public class SimpleSlingServlet extends HttpServlet {

private LogService log;

private HttpService httpService;

protected void doGet(....) {

// nothing Sling/OSGi specific in this method

// 1. Log

log.log(LogService.LOG_DEBUG,

"Processing request, path info=" + req.getPathInfo());

// 2. Create response

...

}

...

}

Servlet Service II
/**

* @scr.component

*/

public class SimpleSlingServlet extends HttpServlet {

/** @scr.reference */

private LogService log;

/** @scr.reference */

private HttpService httpService;

protected void bindLog(LogService l) {

..

}

protected void unbindLog(LogService l) {

..

}

Servlet Service III

public class SimpleSlingServlet extends HttpServlet {

protected void activate(ComponentContext ctx) {

httpService.registerServlet("/test", this, null, null);

}}

protected void deactivate(ComponentContext ctx) {

httpService.unregister("/test“);

}

}

Servlet Service IV

/**

* @scr.property name="path" value="/test"

*/

public class SimpleSlingServlet extends HttpServlet {

protected void activate(ComponentContext ctx) {protected void activate(ComponentContext ctx) {

String myPath = (String)ctx.getProperties().

get("path");

}

}

Maven Plugin Usage I

<plugin>

<groupId>org.apache.felix</groupId>

<artifactId>maven-scr-plugin</artifactId>

<executions>

<execution>

<id>generate-scr-scrdescriptor</id><id>generate-scr-scrdescriptor</id>

<goals><goal>scr</goal></goals>

</execution>

</executions>

</plugin>

Maven Plugin Usage II

<plugin>

<groupId>org.apache.felix</groupId>

<artifactId>maven-bundle-plugin</artifactId>

<extensions>true</extensions>

<configuration>

<instructions><instructions>

<Private-Package>

com.day.sling.examples.*

</Private-Package>

</instructions>

</configuration>

</plugin>

• OSGi solves many common problems

– Classloader hell

– Dynamic systems

OSGi

– Dynamic systems

– Updates and management of an installation

• Use frameworks/tools on top of OSGi

– SCR, Spring-OSGi, Apache Sling

SPRING AND APACHE SLING

The Future

• Set of frameworks, libraries and tools

• The traditional Spring Container

– API for registering services

The Spring Framework

– API for registering services

– XML configuration layer

– Simplified Java layer

– (Avalon to Spring Bridge)

• Spring-OSGi subproject

– Using Spring inside an OSGi bundle

• Web application framework

– based on REST principles

– content-oriented applications (through JCR)

Apache Sling (Incubator)

– content-oriented applications (through JCR)

– runs in an OSGi environment

• Layered in bundles

– separation of concerns

SUMMARY

• Component oriented programming

– Managing complex systems

– Allows loose coupling

Summary

– Allows loose coupling

• OSGi

– Dynamic systems

– Updates and management of an installation

• Use frameworks/tools on top of OSGi

– SCR, Spring-OSGi, Apache Sling

QUESTIONS?

