

Performance Optimizations
for Apache Camel

Christian Müller

http://sav-cdn.com/sites/default/files/imagecache/superphoto/10718770.jpg

WARNING: Jetlagged!

Agenda
● Brief Introduction
● Content based routing EIP (and XML)
● Split EIP (and XML)
● Marshaling / Unmarshaling
● Working with files
● Accessing databases
● Working with threads()
● Working with templates
● Using Web Services
● Messaging
● Q & A

Brief introduction
● 11 years of experience in software

development and architecture
– Focused on Java integration technologies

● Senior Software Developer at Atos
Worldline in Frankfurt, Germany
– Tech. responsible for our integration platform

based on ServiceMix & Camel

● Apache Camel committer and current PMC
chair
– Partly involved in Apache Karaf, ServiceMix

Apache Camel 3.0
● Be involved!

– irc://irc.codehaus.org/camel

– dev@camel.apache.org

– http://camel.465427.n5.nabble.com/Camel-
Development-f479097.html

● Share your ideas & wishes with us!
– http://camel.apache.org/camel-30-ideas.html

● Be part of it!
– http://camel.apache.org/camel-30-roadmap.html

– http://camel.apache.org/contributing.html

Content based routing EIP

● Demo

Content based routing EIP

Duration in ms to route 10.000 10 KByte messages

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

8900 4500 3900 2600 600 500

XPath (JDK)
XPath (Saxon)
XQuery
VTDXML*
Simple
Header

* GPL

https://github.com/muellerc/apachecon-na-2013/tree/master/cbr-eip

Conclusion
● Prefer to use conditions based on your

message header
● Use String contains check, if it works for

you (e.g. with Simple language)
● Use VDTXML if possible (GPL license)
● Use XQuery
● If you (have to) use XPath, make sure you

have Saxon in your class path.

Split EIP

● Demo

Split EIP

Duration in ms to split a 100 MByte message
Memory footprint in MByte to split a 100 MByte file

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 11268800 4805100 2007400 8

XPath (JDK)
XPath (Saxon)
VTDXML*
XML Tokenizer

* GPL

https://github.com/muellerc/apachecon-na-2013/tree/master/split-eip

Conclusion
● Use VDTXML if possible (GPL license)
● Prefer to use the XML Tokenizer (NS

limitation)
● If you (have to) use XPath, make sure you

have Saxon in your class path.
– Otherwise there is a good chance it will

fail

Marshaling / Unmarshaling

● Demo

Marshaling / Unmarshaling

Duration in ms to marshal and unmarshal 10.000 messages

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

3100 2300 2200 1800 5000 1200 800 1100

XStream (XML)
XMLBeans (XML)
JAXB (XML)
JIBX* (XML)
XStream (Json)
Gson (Json)
Jackson (Json)
Java Serialization

https://github.com/muellerc/apachecon-na-2013/tree/master/marshaling-unmarshaling

* doesn't work with Java 7 in every case

Conclusion
● Use JIBX for XML if possible (not Java 7

ready at present)
● Use JAXB for XML
● Use Jackson for Json
● Don't use Java serialization (not

interoperable, not easy to read)

Working with files

● Demo

Working with files

Duration in ms to write 50.000 lines a 140 Bytes into a file

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

14400 17700 4300 4300 3200

Line by Line
Aggregator (String)
Aggregator (StringBuilder)
Streaming
Aggregator (Build in)

https://github.com/muellerc/apachecon-na-2013/tree/master/file-component

Conclusion
● Use an Aggregator to reduce the number of

file accesses (prefer the build in one)
● Use a StringBuilder to concatenate Strings

Working with databases

● Demo

Working with databases

Duration in ms to insert 10.000 records

0

500

1000

1500

2000

2500

3000

3500

3200 1400 1200 1100

Record by Record
Batched (by 10 records)
Batched (by 100 records)
Batched (by 1000 records)

https://github.com/muellerc/apachecon-na-2013/tree/master/sql-component

Conclusion
● Use an Aggregator to reduce the number of

database accesses

Working with threads()

● Demo

Working with threads()

Duration in ms to process 1000 messages Duration in ms to process 10 files

0

2000

4000

6000

8000

10000

12000

11400 101001200 1100

Single threaded processing
Multi threaded processing (10)

https://github.com/muellerc/apachecon-na-2013/tree/master/threads

Conclusion
● Use threads to parallelize your work

Working with templates

● Demo

Working with templates

Duration in ms to process 10000 messages

0

500

1000

1500

2000

2500

3000

3500

3100 1200 1000

String Template
Velocity
FreeMarker

https://github.com/muellerc/apachecon-na-2013/tree/master/template

Conclusion
● Prefer to use FreeMarker or Velocity

Using web services

● Demo

Using web services

Duration in ms to send 10000 messages

0

5000

10000

15000

20000

25000

30000

28300 26300 25400 23000

POJO (without Woodstox)
POJO
PAYLOAD
MESSAGE

https://github.com/muellerc/apachecon-na-2013/tree/master/cxf-component

Conclusion
● Prefer to use the PAYLOAD or MESSAGE

data format if you don't need a Java object
(skip the Unmarshaler)

● Fine tune you container (Jetty, Tomcat, …)
to use the right settings for your needs
(connector, acceptor, ...)

Messaging

● Demo

Messaging

Duration in ms to process 100 messages

0

1000

2000

3000

4000

5000

6000

5600 5600 1100

InOut perm. queue
InOut temp. queue
InOnly

https://github.com/muellerc/apachecon-na-2013/tree/master/jms-component

Messaging

Duration in ms to read and write 10000 messages

0

500

1000

1500

2000

2500

3000

3500

3300 2500 2200

SJMS (Trans.)
SJMS (Trans. Batch Consumer)
SJMS (Trans. Batch)*

https://github.com/muellerc/apachecon-na-2013/tree/master/sjms-component

* could be improved

Conclusion
● Prefer to use InOnly routes instead of InOut

routes if possible
● Use temp. reply queues or exclusive perm.

reply queues if you have to use InOut
routes

● Acknowledge messages in batch mode
(SJMS)

● Use the batch message to reduce the
number of broker accesses (SJMS)

Q & A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

