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Brief introduction
● 11 years of experience in software 

development and architecture
– Focused on Java integration technologies

● Senior Software Developer at Atos 
Worldline in Frankfurt, Germany
– Tech. responsible for our integration platform 

based on ServiceMix & Camel

● Apache Camel committer and current PMC 
chair
– Partly involved in Apache Karaf, ServiceMix



  

Apache Camel 3.0
● Be involved!

– irc://irc.codehaus.org/camel

– dev@camel.apache.org

– http://camel.465427.n5.nabble.com/Camel-
Development-f479097.html

● Share your ideas & wishes with us!
– http://camel.apache.org/camel-30-ideas.html

● Be part of it!
– http://camel.apache.org/camel-30-roadmap.html

– http://camel.apache.org/contributing.html



  

Content based routing EIP

● Demo



  

Content based routing EIP

Duration in ms to route 10.000 10 KByte messages
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* GPL

https://github.com/muellerc/apachecon-na-2013/tree/master/cbr-eip



  

Conclusion
● Prefer to use conditions based on your 

message header
● Use String contains check, if it works for 

you (e.g. with Simple language)
● Use VDTXML if possible (GPL license)
● Use XQuery
● If you (have to) use XPath, make sure you 

have Saxon in your class path.



  

Split EIP

● Demo



  

Split EIP

Duration in ms to split a 100 MByte message
Memory footprint in MByte to split a 100 MByte file
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Conclusion
● Use VDTXML if possible (GPL license)
● Prefer to use the XML Tokenizer (NS 

limitation)
● If you (have to) use XPath, make sure you 

have Saxon in your class path.
– Otherwise there is a good chance it will 

fail



  

Marshaling / Unmarshaling

● Demo



  

Marshaling / Unmarshaling

Duration in ms to marshal and unmarshal 10.000 messages
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https://github.com/muellerc/apachecon-na-2013/tree/master/marshaling-unmarshaling

* doesn't work with Java 7 in every case



  

Conclusion
● Use JIBX for XML if possible (not Java 7 

ready at present)
● Use JAXB for XML
● Use Jackson for Json
● Don't use Java serialization (not 

interoperable, not easy to read)



  

Working with files

● Demo



  

Working with files

Duration in ms to write 50.000 lines a 140 Bytes into a file
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https://github.com/muellerc/apachecon-na-2013/tree/master/file-component



  

Conclusion
● Use an Aggregator to reduce the number of 

file accesses (prefer the build in one)
● Use a StringBuilder to concatenate Strings



  

Working with databases

● Demo



  

Working with databases

Duration in ms to insert 10.000 records
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https://github.com/muellerc/apachecon-na-2013/tree/master/sql-component



  

Conclusion
● Use an Aggregator to reduce the number of 

database accesses



  

Working with threads()

● Demo



  

Working with threads()

Duration in ms to process 1000 messages Duration in ms to process 10 files
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https://github.com/muellerc/apachecon-na-2013/tree/master/threads



  

Conclusion
● Use threads to parallelize your work



  

Working with templates

● Demo



  

Working with templates

Duration in ms to process 10000 messages
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https://github.com/muellerc/apachecon-na-2013/tree/master/template



  

Conclusion
● Prefer to use FreeMarker or Velocity



  

Using web services

● Demo



  

Using web services

Duration in ms to send 10000 messages
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Conclusion
● Prefer to use the PAYLOAD or MESSAGE 

data format if you don't need a Java object 
(skip the Unmarshaler)

● Fine tune you container (Jetty, Tomcat, …) 
to use the right settings for your needs 
(connector, acceptor, ...)



  

Messaging

● Demo



  

Messaging

Duration in ms to process 100 messages
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https://github.com/muellerc/apachecon-na-2013/tree/master/jms-component



  

Messaging

Duration in ms to read and write 10000 messages
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https://github.com/muellerc/apachecon-na-2013/tree/master/sjms-component

* could be improved



  

Conclusion
● Prefer to use InOnly routes instead of InOut 

routes if possible
● Use temp. reply queues or exclusive perm. 

reply queues if you have to use InOut 
routes

● Acknowledge messages in batch mode 
(SJMS)

● Use the batch message to reduce the 
number of broker accesses (SJMS)



  

Q & A
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