
Firefox
Crash
Reporting

laura@ mozilla.com
@lxt

Webtools @ Mozilla

• Crash reporting

• Performance measurement

• Localization

• Code search and static analysis

• Other stuff: product delivery and updates, plugins management,
infrastructure dashboards, authentication, Etherpad Lite, Air Mozilla...

Overview

• What is Socorro?

• Some numbers

• Architecture

• Work process and tools

• Future, questions

What is Socorro?

Socorro

Very Large Array at Socorro, New Mexico, USA. Photo taken by Hajor, 08.Aug.2004. Released under cc.by.sa
and/or GFDL. Source: http://en.wikipedia.org/wiki/File:USA.NM.VeryLargeArray.02.jpg

Typical use cases

• What are the most common crashes for a product/version/
channel?

• What new crashes / regressions do we see emerging? What’s
the cause of an emergent crash?

• How crashy is one build compared to another?

• What correlations do we see with a particular crash?

What else can we do?

• Does one build have more (null signature) crashes than other
builds?

• Analyze differences between Flash versions x and y crashes

• Detect duplicate crashes

• Detect explosive crashes

• Find “frankeninstalls”

• Analyze exploitable crashes

• Ad hoc reporting for tracking down chemspill bugs

Scale

A different type of scaling:

• Typical webapp: scale to millions of users without
degradation of response time

• Socorro: less than a hundred users, terabytes of data

Basic law of scale still applies:

The bigger you get, the more spectacularly you fail

Firehose engineering

• At peak we receive up to 3000 crashes per minute

• 3 million per day

• Median crash size 150k, max size 20MB (reject bigger)

• Android/FirefoxOS crashes a bit bigger (200k/250k)

• ~800GB stored in PostgreSQL - metadata + generated reports

• ~110TB stored in HDFS (3x replication, ~40TB of HBase data)
- raw reports + processed reports

Implementation scale

• > 120 physical boxes (not cloud)

• ~10 developers + DBAs + sysadmin team + QA + Hadoop ops

• Deploy weekly+ but will move to CD within next month or so

Architecture

“Socorro has a lot of moving parts”

...

“I prefer to think of them as dancing parts”

Lifetime of a crash

Collection

collector' crashmover'

filesystem'

HBase'

Collection

• Breakpad submits raw crash via POST (metadata json +
minidump)

• Collected to disk by collector (web.py WSGI app)

• Moved to HBase by crashmover

• Noticed in queue by monitor and assigned for processing

Processing

HBase&

PostgreSQL&

Elas1cSearch&

monitor&

processor&

Symbol&store&

minidumpstackwalk&

Processing

• Noticed in queue by monitor and assigned for processing

• Processor spins off minidumpstackwalk (MDSW)

• MDSW re-unites raw crash with symbols to generate a stack

• Processor generates a signature and pulls out other data

• Processor writes processed crash back to HBase and
metadata to PostgreSQL and ElasticSearch

Reporting

HBase&

PostgreSQL&

Elas1cSearch&

middleware& webapp&

memcache&

crons&

Other&data&sources&

Back end processing

Large number of cron jobs, e.g.:

• Copy clean data into fact tables

• Update ADU from Vertica

• Calculate aggregates: Top crashers by signature, crashes/100ADU/build

• Process incoming builds from ftp server

• Match known crashes to bugzilla bugs

• Duplicate detection

• Generate extracts (CSV) for further analysis (in CouchDB, f.e.)

Middleware

• All data access to through REST API

• Enable other apps against the data platform (and allow the
core team to rewrite webapp more easily)

• Experiments with giving each component its own API for
status and health checks

Webapp

• Hardest part is sometimes how to visualize the data

• Example: reporting in build time as well as clock time

• Just rewritten in Python/Django; running in parallel with
older PHP app

Pluggable architecture

• Goal is to have components be pluggable and easy to switch
out

• Back end components have a simple fetch-transform-save
architecture

• Storage systems pluggable, e.g. for low volume installation
use filesystem instead of HBase

• Middleware isolates data storage from the webapp

Implementation details

• Python 2.6

• PHP 5.3

• PostgreSQL 9.2

• memcache for the webapp

• Thrift for HBase access

• HBase (CDH3, 4 sometime soon)

• Some bits of C++, Java, perl, Pig

Managing complexity:
work process and tools

Development process

• Fork

• Hard to install (you can use a VM)

• Pull request with bugfix/feature

• Code review

• Lands on master

Development process -2

• Jenkins polls github master, picks up changes

• Jenkins runs tests, builds a “package”

• Build automatically picked up and pushed to dev

• Wanted changes merged to release branch

• Jenkins builds release branch, pushes to stage

• QA runs acceptance on stage (Selenium/Jenkins + manual)

• Push same build to production

Deployment =

• Run a single script with the build as
parameter

• Pushes it out to all machines and restarts
where needed

• About to automate this further

As an aside:

Build all the machinery for continuous
deployment even if you don’t want to deploy
continuously

• Some releases involve a configuration change

• These are controlled and managed through Puppet

• Again, a single line to change config the same way every
time

• Config controlled the same way on dev and stage; tested the
same way; deployed the same way

Configuration management

Virtualization

• Front end devs don’t want to install HBase

• Use Vagrant to set up a virtual machine

• Use Jenkins to build a new Vagrant VM with each code build

• Use Puppet to configure the VM the same way as production

• Hard part is keeping Vagrant instances up to date and finding the right packages
(Ubuntu vs RHEL in prod) - failing right now

• Second hard part is having a useful amount of data for development - fakedata
instance for testing

New and Upcoming

• crontabber: manage cron dependencies and auto-recover on
failure

• More use of statsd/graphite for perf measurement and
monitoring

• chief for deployment via IRCbot

• Try servers: stage different branches in parallel

finally:

New and upcoming
• More reports and visualizations: gc crashes, crash trends (done), Flash version reporting,

better signature summaries (done), better correlation reports

• ElasticSearch: better search including faceting (shipping in 2 weeks)

• Dragnet: using crash data to populate a database of DLLs (staged)

• More analytics: exploitability, etc

• More ways to query data: API, reporting replica of PostgreSQL, Pig (done), ES

• Better (real) queueing (massive bikeshedding effort)

• Grand Unified Configuration System (done, shipping piecewise)

• crontabber (cronjob co-ordination and management. done)

• SaaS

Everything is open (source)

Site: https://crash-stats.mozilla.com

Fork: https://github.com/mozilla/socorro

Read/file/fix bugs: https://bugzilla.mozilla.org/

Docs: http://www.readthedocs.org/docs/socorro

Mailing list: https://lists.mozilla.org/listinfo/tools-socorro

Join us in IRC: irc.mozilla.org #breakpad

Questions?

• Ask me, now or later

• laura@mozilla.com

