
Hadoop and HBase on the Cloud:

A Case Study on Performance and Isolation.

Konstantin V. Shvachko Jagane Sundar

June 14, 2012

 Founders of AltoStor and AltoScale

 Jagane: WANdisco, CTO and VP Engineering of Big Data

– Director of Hadoop Performance and Operability at Yahoo!

– Big data, cloud, virtualization, and networking experience

 Konstantin: WANdisco, Chief Architect

– Hadoop, HDFS at Yahoo! & eBay

– Efficient data structures and algorithms for large-scale distributed storage systems

– Giraffa - file system with distributed metadata & data utilizing HDFS and HBase.

Hosted on Apache Extra

/ page 2

Authors

 The Hadoop Distributed File System

(HDFS)

– Reliable storage layer

– NameNode – namespace and block

management

– DataNodes – block replica container

 MapReduce – distributed computation

framework

– Simple computational model

– JobTracker – job scheduling, resource

management, lifecycle coordination

– TaskTracker – task execution module

 Analysis and transformation of very large

amounts of data using commodity

servers

/ page 3

A reliable, scalable, high performance distributed computing system

What is Apache Hadoop

NameNode

DataNode

TaskTracker

JobTracker

DataNode

TaskTracker

DataNode

TaskTracker

Block

Task

 Table: big, sparse, loosely structured

– Collection of rows, sorted by row keys

– Rows can have arbitrary number of

columns

 Table is split Horizontally into Regions

– Dynamic Table partitioning

– Region Servers serve regions to

applications

 Columns grouped into Column families

– Vertical partition of tables

 Distributed Cache: Regions are loaded

in nodes’ RAM

– Real-time access to data

/ page 4

A distributed key-value storage for real-time access to semi-structured data

What is Apache HBase

DataNode DataNode DataNode

NameNode JobTracker

 RegionServer RegionServer RegionServer

TaskTracker TaskTracker TaskTracker

H
B

a
s
e

M
a

s
te

r

/ page 5

A Parallel Computational Model and Distributed Framework

What is MapReduce

dogs C, 3

like

cats

V, 1

C, 2 V, 2

C, 3 V, 1

C, 8

V, 4

 I/O utilization

– Can run with the speed of spinning drives

– Examples: DFSIO, Terasort (well tuned)

 Network utilization – optimized by design

– Data locality. Tasks executed on nodes where input data resides.

No massive transfers

– Block replication of 3 requires two data transfers

– Map writes transient output locally

– Shuffle requires cross-node transfers

 CPU utilization

1. IO bound workloads preclude from using more cpu time

2. Cluster provisioning:

peak-load performance vs. average utilization tradeoff

/ page 6

Low Average CPU Utilization on Hadoop Clusters

What is the Problem

 Computation of Pi

– pure CPU workload, no input or output data

– Enormous amount of FFTs computing amazingly large numbers

– Record Pi run over-heated the datacenter

 Well tuned Terasort is CPU intensive

 Compression – marginal utilization gain

 Production clusters run cold

1. IO bound workloads

2. Conservative provisioning of cluster resources to meet strict SLAs

/ page 7

CPU Load

Two quadrillionth (1015)

digit of π is 0

 72 GB - total RAM / node

– 4 GB – DataNode

– 2 GB – TaskTracker

– 16 GB – RegionServer

– 2 GB – per individual task: 25 task slots (17 maps and 8 reduces)

 Average utilization vs peak-load performance

– Oversubscription (28 task slots)

– Better average utilization

– MR Tasks can starve HBase RegionServers

 Better Isolation of resources → Aggressive resource allocation

/ page 8

Rule of thumb

Cluster Provisioning Dilemma

 Goal: Eliminate disk IO contention

 Faster non-volatile storage devices improve IO performance

– Advantage in random reads

– Similar performance for sequential IOs

 More RAM: HBase caching

/ page 9

With non-spinning storage

Increasing IO Rate

 DFSIO benchmark measures average throughput for IO operations

– Write

– Read (sequential)

– Append

– Random Read (new)

 MapReduce job

– Map: same operation write or read for all mappers. Measures throughput

– Single reducer: aggregates the performance results

 Random Reads (MAPREDUCE-4651)

– Random Read DFSIO randomly chooses an offset

– Backward Read DFSIO reads files in reverse order

– Skip Read DFSIO reads seeks ahead after every portion read

– Avoid read-ahead buffering

– Similar results for all three random read modifications

/ page 10

Standard Hadoop Benchmark measuring HDFS performance

What is DFSIO

https://issues.apache.org/jira/browse/MAPREDUCE-4651
https://issues.apache.org/jira/browse/MAPREDUCE-4651
https://issues.apache.org/jira/browse/MAPREDUCE-4651

 Four node cluster: Hadoop 1.0.3 HBase 0.92.1

– 1 master-node: NameNode, JobTracker

– 3 slave node: DataNode, TaskTracker

 Node configuraiton

– Intel 8 core processor with hyper-threading

– 24 GB RAM

– Four 1TB 7200 rpm SATA drives

– 1 Gbps network interfaces

 DFSIO dataset

– 72 files of size 10 GB each

– Total data read: 7GB

– Single read size: 1 MB

– Concurrent readers: from 3 to 72

/ page 11

DFSIO

Benchmarking Environment

0

200

400

600

800

1000

1200

1400

1600

1800

3 12 24 48 72

A
g

g
re

g
a

te
 T

h
ro

u
g

h
p

u
t

(M
B

/s
e
c
)

Concurrent Readers

Disks

Flash

/ page 12

Increasing Load with Random Reads

Random Reads

 YCSB allows to define a mix of read / write operations,

measure latency and throughput

– Compares different database: relational and no-SQL

– Data is represented as a table of records with number of fixed fields

– Unique key identifies each record

 Main operations

– Insert: Insert a new record

– Read: Read a record

– Update: Update a record by replacing the value of one field

– Scan: Scan a random number of consequent records, starting at a random record

key

/ page 13

Yahoo! Cloud Serving Benchmark

What is YCSB

 Four node cluster

– 1 master-node: NameNode, JobTracker, HBase Master, Zookeeper

– 3 slave node: DataNode, TaskTracker, RegionServer

– Physical master node

– 2 to 4 VMs on a slave node. Max 12 VMs

 YCSB datasets of two different sizes: 10 and 30 million records

– dstat collects system resource metrics: CPU, memory usage, disk and network stats

/ page 14

YCSB

Benchmarking Environment

/ page 15

YCSB Workloads

 Workloads Insert % Read % Update % Scan %

Data Load 100

Reads with heavy insert load 55 45

Short range scans: workload E 5 95

/ page 16

Random reads and Scans substantially faster with flash

Average Workloads Throughput

0

10

20

30

40

50

60

70

80

90

100

Data Load
Reads with

Inserts Short range
Scans

T
h

ro
u

g
h

p
u

t
(%

 O
p

s
/s

e
c
)

Disks

Flash

0

500

1000

1500

2000

2500

3000

64 256 512 1024

T
h

ro
u

g
h

p
u

t
(O

p
s

/s
e
c
)

Concurrent Threads

Physical nodes

6 Vms

9 Vms

12 Vms

/ page 17

Adding one VM per node increases overall performance 20% on average

Short range Scans: Throughput

/ page 18

Latency grows linearly with number of threads on physical nodes

Short range Scans: Latency

0

200

400

600

800

1000

1200

64 256 512 1024

A
v
e
ra

g
e

 L
a

te
n

c
y
 (

m
s
)

Concurrent Threads

Physical nodes

6 Vms

9 Vms

12 Vms

/ page 19

Virtualized Cluster drastically increases CPU utilization

CPU Utilization comparison

4% 3% 1%

92%

CPU Physical nodes

user system wait idle

55% 23%

1%
21%

CPU Virtualized cluster

user system wait idle

 Physical node cluster generates

very light CPU load – 92% idle

 With VMs the CPU can be drawn close to

100% at peaks

/ page 20

Latency of reads on mixed workload: 45% reads and 55% inserts

Reads with Inserts

0

100

200

300

400

500

600

700

10 million records

30 million records

R
e
a
d

 L
a
te

n
c
y
 (

m
s
)

Disks

Flash

 HDFS

– Sequential IO is handled well by the disk storage

– Flash substantially outperforms disks on workloads with random reads

 HBase write-only workload provides marginal improvement for flash

 Using multiple VMs / node provides 100% peak utilization of HW resources

– CPU utilization on physical-node clusters is a fraction of its capacity

 Combination of Flash Storage and Virtualization implies

high performance of HBase for

Random Read and Reads Mixed with writes workloads

 Virtualization serves two main functions:

– Resource utilization by running more server processes per node

– Resource isolation by designating certain percentage of resources to each server

and not letting them starve each other

/ page 21

VMs allow to utilize Random Read advantage of flash for Hadoop

Conclusions

Thank you

Konstantin V. Shvachko Jagane Sundar

