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 The Hadoop Distributed File System 

(HDFS) 

– Reliable storage layer 

– NameNode – namespace and block 

management 

– DataNodes – block replica container 

 MapReduce – distributed computation 

framework 

– Simple computational model 

– JobTracker – job scheduling, resource 

management, lifecycle coordination 

– TaskTracker – task execution module 

 Analysis and transformation of very large 

amounts of data using commodity 

servers 
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A reliable, scalable, high performance distributed computing system 

 

What is Apache Hadoop 
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 Table: big, sparse, loosely structured 

– Collection of rows, sorted by row keys 

– Rows can have arbitrary number of 

columns 

 Table is split Horizontally into Regions 

– Dynamic Table partitioning 

– Region Servers serve regions to 

applications 

 Columns grouped into Column families 

– Vertical partition of tables 

 Distributed Cache:  Regions are loaded 

in nodes’ RAM 

– Real-time access to data 
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A distributed key-value storage for real-time access to semi-structured data 

What is Apache HBase 
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A Parallel Computational Model and Distributed Framework 

What is MapReduce 
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 I/O utilization 

– Can run with the speed of spinning drives 

– Examples: DFSIO, Terasort (well tuned) 

 Network utilization – optimized by design 

– Data locality. Tasks executed on nodes where input data resides.  

No massive transfers 

– Block replication of 3 requires two data transfers 

– Map writes transient output locally 

– Shuffle requires cross-node transfers 

 CPU utilization 

1. IO bound workloads preclude from using more cpu time 

2. Cluster provisioning: 

peak-load performance vs. average utilization tradeoff 
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Low Average CPU Utilization on Hadoop Clusters  

What is the Problem 



 Computation of Pi 

– pure CPU workload, no input or output data 

– Enormous amount of FFTs computing amazingly large numbers 

– Record Pi run over-heated the datacenter 

 Well tuned Terasort is CPU intensive 

 Compression – marginal utilization gain 

 Production clusters run cold 

1. IO bound workloads 

2. Conservative provisioning of cluster resources to meet strict SLAs 
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CPU Load 

Two quadrillionth (1015) 

digit of π is 0 



 72 GB - total RAM / node 

–  4 GB – DataNode 

–  2 GB – TaskTracker 

– 16 GB – RegionServer 

–  2 GB – per individual task: 25 task slots (17 maps and 8 reduces) 

 Average utilization vs peak-load performance 

– Oversubscription (28 task slots) 

– Better average utilization 

– MR Tasks can starve HBase RegionServers 

 Better Isolation of resources → Aggressive resource allocation 
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Rule of thumb 

Cluster Provisioning Dilemma 



 Goal: Eliminate disk IO contention 

 Faster non-volatile storage devices improve IO performance 

– Advantage in random reads 

– Similar performance for sequential IOs 

 More RAM: HBase caching 
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With non-spinning storage 

Increasing IO Rate 



 DFSIO benchmark measures average throughput for IO operations 

– Write 

– Read (sequential) 

– Append 

– Random Read (new) 

 MapReduce job 

– Map: same operation write or read for all mappers. Measures throughput 

– Single reducer: aggregates the performance results 

 Random Reads (MAPREDUCE-4651) 

– Random Read DFSIO randomly chooses an offset 

– Backward Read DFSIO reads files in reverse order 

– Skip Read DFSIO reads seeks ahead after every portion read 

– Avoid read-ahead buffering 

– Similar results for all three random read modifications 
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Standard Hadoop Benchmark measuring HDFS performance 

What is DFSIO 

https://issues.apache.org/jira/browse/MAPREDUCE-4651
https://issues.apache.org/jira/browse/MAPREDUCE-4651
https://issues.apache.org/jira/browse/MAPREDUCE-4651


 Four node cluster:    Hadoop 1.0.3       HBase 0.92.1 

– 1 master-node: NameNode, JobTracker 

– 3 slave node: DataNode, TaskTracker 

 Node configuraiton 

– Intel 8 core processor with hyper-threading 

– 24 GB RAM 

– Four 1TB 7200 rpm SATA drives 

– 1 Gbps network interfaces 

 DFSIO dataset 

– 72 files of size 10 GB each 

– Total data read: 7GB 

– Single read size: 1 MB 

– Concurrent readers: from 3 to 72 
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DFSIO 

Benchmarking Environment 
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Increasing Load with Random Reads 

Random Reads 



 YCSB allows to define a mix of read / write operations,  

measure latency and throughput 

– Compares different database: relational and no-SQL 

– Data is represented as a table of records with number of fixed fields 

– Unique key identifies each record 

 Main operations 

– Insert: Insert a new record 

– Read: Read a record 

– Update: Update a record by replacing the value of one field 

– Scan: Scan a random number of consequent records, starting at a random record 

key 
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Yahoo! Cloud Serving Benchmark 

What is YCSB 



 Four node cluster 

– 1 master-node: NameNode, JobTracker, HBase Master, Zookeeper 

– 3 slave node: DataNode, TaskTracker, RegionServer 

– Physical master node 

– 2 to 4 VMs on a slave node. Max 12 VMs 

 YCSB datasets of two different sizes: 10 and 30 million records 

– dstat collects system resource metrics: CPU, memory usage, disk and network stats 
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YCSB 

Benchmarking Environment 
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YCSB Workloads 

 

 Workloads Insert % Read % Update % Scan % 

Data Load 100 

Reads with heavy insert load 55 45 

Short range scans: workload E 5 95 
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Random reads and Scans substantially faster with flash 

Average Workloads Throughput 
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Adding one VM per node increases overall performance 20% on average 

Short range Scans: Throughput 
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Latency grows linearly with number of threads on physical nodes 

Short range Scans: Latency 
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Virtualized Cluster drastically increases CPU utilization 

CPU Utilization comparison 

4% 3% 1% 

92% 

CPU Physical nodes 

user system wait idle

55% 23% 

1% 
21% 

CPU Virtualized cluster 

user system wait idle

 Physical node cluster generates  

very light CPU load – 92% idle  

 With VMs the CPU can be drawn close to 

100% at peaks 
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Latency of reads on mixed workload: 45% reads and 55% inserts  

Reads with Inserts 
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 HDFS 

– Sequential IO is handled well by the disk storage 

– Flash substantially outperforms disks on workloads with random reads 

 HBase write-only workload provides marginal improvement for flash 

 Using multiple VMs / node provides 100% peak utilization of HW resources 

– CPU utilization on physical-node clusters is a fraction of its capacity 

 Combination of Flash Storage and Virtualization implies 

high performance of HBase for  

Random Read and Reads Mixed with writes workloads 

 Virtualization serves two main functions: 

– Resource utilization by running more server processes per node 

– Resource isolation by designating certain percentage of resources to each server 

and not letting them starve each other 
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VMs allow to utilize Random Read advantage of flash for Hadoop 

Conclusions 



Thank you 

Konstantin V. Shvachko     Jagane Sundar 


