Scalable Object Storage with Apache CloudStack and Apache Hadoop

February 26 2013

Chiradeep Vittal
@chiradeep
Agenda

- What is CloudStack
- Object Storage for IAAS
- Current Architecture and Limitations
- Requirements for Object Storage
- Object Storage integrations in CloudStack
- HDFS for Object Storage
- Future directions
Apache CloudStack

- History
 - Incubating in the Apache Software Foundation since April 2012
 - Open Source since May 2010
 - In production since 2009
 - Turnkey platform for delivering IaaS clouds
 - Full featured GUI, end-user API and admin API

Build your cloud the way the world’s most successful clouds are built
How did Amazon build its cloud?

- Amazon eCommerce Platform
- AWS API (EC2, S3, …)
- Amazon Orchestration Software
- Open Source Xen Hypervisor
 - Networking
 - Commodity Servers
 - Commodity Storage
How can YOU build a cloud?

- Optional Portal
- CloudStack or AWS API
- CloudStack Orchestration Software
- Hypervisor (Xen/KVM/VMW/)
- Networking
- Servers
- Storage
Cloud-Style Workloads

- Low cost
 - Standardized, cookie cutter infrastructure
 - Highly automated and efficient
- Application owns availability
 - At scale everything breaks
 - Focus on MTTR instead of MTBF
“At scale, everything breaks”

- Urs Hölzle, Google

Server failure comes from:
- 70% - hard disk
- 6% - RAID controller
- 5% - memory
- 18% - other factors

Application can still fail for other reasons:
- Network failure
- Software bugs
- Human admin error

8%

Annual Failure Rate of servers

Kashi Venkatesh Vishwanath and Nachiappan Nagappan, *Characterizing Cloud Computing Hardware Reliability*, *SoCC’10*
At scale...everything breaks
Regions and zones

Region “West”
- Zone “West-Alpha”
- Zone “West-Delta”
- Zone “West-Gamma”

Low Latency Backbone (e.g., SONET ring)
Region “West” \hspace{1cm} \text{Internet} \hspace{1cm} \text{Region “East”}

Region “South”

Low Latency

Geographic separation
Secondary Storage in CloudStack 4.0

• NFS server default
 – can be mounted by hypervisor
 – Easy to obtain, set up and operate

• Problems with NFS:
 – Scale: max limits of file systems
 • Solution: CloudStack can manage multiple NFS stores (+ complexity)
 – Performance
 • N hypervisors : 1 storage CPU / 1 network link
 – Wide area suitability for cross-region storage
 • Chatty protocol
 – Lack of replication
Object Storage in a region

Region “West”

Zone “West-Alpha”

Zone “West-Beta”

Zone “West-Delta”

Zone “West-Gamma”

Object Storage Technology

- Replication
- Audit
- Repair
- Maintenance
Object Storage enables reliability

Region “West”
Object Storage also enables other applications

Region “West”

- Object Store
- API Servers

Object Storage Technology

- DropBox
- Static Content
- Archival
Object Storage characteristics

- Highly reliable and durable
 - 99.9 % availability for AWS S3
 - 99.999999999 % durability

- Massive scale
 - 1.3 trillion objects stored across 7 AWS regions [Nov 2012 figures]
 - Throughput: 830,000 requests per second

- Immutable objects
 - Objects cannot be modified, only deleted

- Simple API
 - PUT/POST objects, GET objects, DELETE objects
 - No seek / no mutation / no POSIX API

- Flat namespace
 - Everything stored in buckets.
 - Bucket names are unique
 - Buckets can only contain objects, not other buckets

- Cheap and getting cheaper
CloudStack S3 API Server

S3 API Servers

MySQL

Object Storage Technology
CloudStack S3 API Server

- Understands AWS S3 REST-style and SOAP API
- Pluggable backend
 - Backend storage needs to map simple calls to their API
 - E.g., `createContainer`, `saveObject`, `loadObject`
 - Default backend is a POSIX filesystem
 - Backend with Caringo Object Store (commercial vendor) available
 - HDFS backend also available
- MySQL storage
 - Bucket -> object mapping
 - ACLs, bucket policies
Object Store Integration into CloudStack

• For images and snapshots
• Replacement for NFS secondary storage

 Or

 Augmentation for NFS secondary storage

• Integrations available with
 – Riak CS
 – Openstack Swift

• New in 4.2 (upcoming):
 – Framework for integrating storage providers
What do we want to build?

- Open source, ASL licensed object storage
- Scales to at least 1 billion objects
- Reliability and durability on par with S3
- S3 API (or similar, e.g., Google Storage)
- Tooling around maintenance and operation, specific to object storage
The following slides are a design discussion
Architecture of Scalable Object Storage
Why HDFS

• ASF Project (Apache Hadoop)
• Immutable objects, replication
• Reliability, scale and performance
 – 200 million objects in 1 cluster [Facebook]
 – 100 PB in 1 cluster [Facebook]
• Simple operation
 – Just add data nodes
HDFS-based Object Storage
BUT

• Name Node Scalability
 – 150 bytes RAM / block
 – GC issues
• Name Node SPOF
 – Being addressed in the community✔
• Cross-zone replication
 – Rack-awareness placement ✔
 – What if the zones are spread a little further apart?
• Storage for object metadata
 – ACLs, policies, timers
Name Node scalability

• 1 billion objects = 3 billion blocks (chunks)
 – Average of 5 MB/object = 5 PB (actual), 15 PB (raw)
 – 450 GB of RAM per Name Node
 • $150b \times 3 \times 10^9$
 – 16 TB / node => 1000 Data nodes

• Requires Name Node federation?
• Or an approach like HAR files
Name Node Federation

Extension: Federated NameNodes are HA pairs
Federation issues

- HA for name nodes
- Namespace shards
 - Map object -> name node
 - Requires another scalable key-value store
 - HBase?
- Rebalancing between name nodes
Replication over lossy/slower links

A. Asynchronous replication
 - Use `distcp` to replicate between clusters
 - 6 copies vs. 3
 - Master/Slave relationship
 • Possibility of loss of data during failover
 • Need coordination logic outside of HDFS

B. Synchronous replication
 - API server writes to 2 clusters and acks only when both writes are successful
 - Availability compromised when one zone is down
CAP Theorem

Consistency or Availability during partition

Many nuances
Storage for object metadata

A. Store it in HDFS along with the object
 - Reads are expensive (e.g., to check ACL)
 - Mutable data, needs layer over HDFS
B. Use another storage system (e.g. HBase)
 - Name node federation also requires this.
C. Modify Name Node to store metadata
 - High performance
 - Not extensible
Object store on HDFS Future

• Viable for small-sized deployments
 – Up to 100-200 million objects
 – Datacenters close together
• Larger deployments needs development
 – No effort ongoing at this time
Conclusion

• CloudStack needs object storage for “cloud-style” workloads
• Object Storage is not easy
• HDFS comes close but not close enough
• Join the community!