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byte[4096] canvas;

void mouseClickCallback(int x, int y) {
  drawCircle(x, y, 100);
}

void drawCircle(int x, int y, int r) {
  ...
  // draws into canvas
  ...
}
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Objects

public abstract class Shape {
  public void draw(Canvas c);
}
public class Paint {
  private Canvas;
  private Shape;
  public Paint(Canvas canvas, Shape shape) { … }

  public void mouseClick(int x, int y) {
    shape.draw(canvas, x, y);
  }
  public static void main() {
    new Paint(
      new Canvas(),
      new Circle(100));
  }
}
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Factories

public class Paint {
  …
  public static void main() {
    new Paint(
      new Canvas(),
      ShapeFactory.createShape());
  }
}
public class ShapeFactory {
  public static Shape createShape() {
    return Class.forName(
        System.getProperty("shapefactory.shapeimpl"));
  }
} Data abstraction/encapsulation
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Dependency injection

public class Paint implements ShapeConsumer {
  @Inject
  public Paint(Shape shape) { … }
} 
public class ShapeModule extends AbstractModule {
  @Override 
  protected void configure() {
    bind(Shape.class).to(Circle.class);
    bind(ShapeConsumer.class).to(Paint.class);
  }
}

Injector injector = Guice.createInjector(new ShapeModule());
ShapeConsumer consumer = injector.getInstance(ShapeConsumer.class); 
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Context and Dependency Injection (CDI)

public class Paint implements ShapeConsumer {
  @Inject
  public Shape shape;
} 
@Default
public class CircleProducer {
  @Produces 
  protected Shape createShape() {
    return new CircleImpl();
  }
}

Paint paint = beanContainer.getBeanByType(Paint.class); 
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µServices

● Interface-based programming, but more
● Service Registry

● Centrally accessible
● Browsable
● Notifications

● Service Registry Benefits
● Consuming code is in control of provider selection

– But not provider instantiation and configuration
● Provider code is in control of when to provide
● Promotes very loose coupling and late binding



META-INF/services

ServiceLoader<ShapeFactory> factories = 
  ServiceLoader.load(ShapeFactory.class);

List<Shape> shapes = …

for (ShapeFactory factory : factories) {
shapes.add(factory.next().createShape());

}

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism



OSGi services

● OSGi framework provides the concepts we need
● Centralized service registry
● Consumer has control over selection
● Provider has control over when to provide
● Plus full-blown deployment and packaging modularity 

with run-time dynamism



OSGi service advantages

● Lightweight services
● Direct method invocation

● Structured code
● Promotes separation of interface from implementation
● Enables reuse, substitutability, loose coupling, and late 

binding
● Dynamics

● Loose coupling and late binding make it possible to 
support run-time management of module



Using a service (1/2)

● BundleContext allows bundles to find services

public interface BundleContext {
  …
  ServiceReference[] getServiceReferences(...);
  ServiceReference getServiceReference(...);
  Object getService(...);
  boolean ungetService(...);
}



Using a service (2/2)

public class Paint implements BundleActivator {
  public void start(BundleContext context) {
    ServiceReference ref = context.getServiceReference(
      com.foo.Shape.class.getName());
    if (ref != null) {
      Shape s = (Hello) context.getService(ref);
      if (s != null) {
        ...
        context.ungetService(h);
      }
    }
  }
  public void stop(BundleContext context) {
  }
} Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism



Publishing a service (1/2)

● BundleContext allows bundles to publish services

public interface BundleContext {
  ...
  ServiceRegistration registerService(...);
  ...
}



Publishing a service (2/2)

public class Activator implements BundleActivator {
  private ServiceRegistration reg = null;

  public void start(BundleContext context) {
    reg = context.registerService(
      com.foo.Shape.class.getName(),
      new Circle(100), null);
  }
  public void stop(BundleContext context) {
    reg.unregister();
  }
}

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism



Service dynamism

● Services can be monitored
BundleContext.addServiceListener()

public interface ServiceListener extends EventListener {
  public void serviceChanged(ServiceEvent event);
}

public class ServiceEvent extends EventObject {
  public final static int REGISTERED    = 0x00000001;
  public final static int MODIFIED      = 0x00000002;
  public final static int UNREGISTERING = 0x00000004;
  public ServiceReference getServiceReference() { … }
  public int getType() { … }
  ...
}

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism



Services and dependency injection

● Services and dependency injection
● Complementary

● Use POJOs
● Avoid dependencies on OSGi API



● Here is an iPOJO component providing the service

Apache Felix iPOJO example

@Component
@Provides
public class Circle implements Shape {
...
}



Apache Felix iPOJO example

● Here is an iPOJO component providing the service

● Implementation with service dependency
@Component
public class Paint {
  @Requires
  private Shape shape;

  public void useShape() {
    ...
  }
}

@Component
@Provides
public class Circle implements Shape {
...
}



Apache Felix iPOJO example

● Here is an iPOJO component providing the service

● Implementation with service dependency

Bundle activator no longer necessary, 
but lifecycle control still possible 

@Component
@Provides
public class Circle implements Shape {
...
}

@Component
public class Paint {
  @Requires
  private Shape shape;

  public void useShape() {
    ...
  }
}



Services and dependency Injection

● Advantages when combined with service orientation
● Dependency injection no longer needs global view

– Information localized to just the provider/consumer
● No longer restricted to a single DI framework

– Different DI frameworks can play together via the service 
registry



OSGi service disadvantages

● The downside to OSGi is that it requires a bottom-
up commitment

● You need to convert all of your code into proper 
modules to take advantage of services

● A top-down approach of adopting services can help 
ease migration to more modular code



PojoSR
and (OSGi) µServices for the rest of us



What is PojoSR?

● It largely removes the modularity layer from the 
OSGi framework

● Provides
● A centralized service registry based on OSGi API
● Lifecycle hooks for JAR files
● A “light” OSGi framework for the class path

● Available at http://pojosr.googlecode.com



Why this approach?

● OSGi API is a standard with years of experience 
behind it

● Can re-use OSGi modules (a.k.a. bundles) and/or 
technology

● Can leverage services without having to completely 
modularize first (i.e., top-down)

● Provides a path to full-blown modularity
● Go see BJ Hargrave and Peter Kriens slides on 

“Service Migration First”



What you keep

● Bundle activator
● JAR file lifecycle hook

– Gives JAR file a lifecycle state (started or stopped)
● Two simple methods (start()/stop()) 

– Give you a bundle context
● Bundle context

● Allows you to
– Lookup services
– Provide services
– Listen for services

● or you can still use iPOJO instead



What you lose

● Module-private encapsulation
● Side-by-side versions
● Dependency consistency checking
● Dynamic module deployment
● Full OSGi compatibility



What you don't lose

● Surprisingly, some of the seemingly more advanced 
OSGi dynamism features

● Bundle-based dynamism
● Service-based dynamism

● How is this possible?



Bundle-based dynamism

● Bundle lifecycle state provides a hook for bundle-
based dynamic extensibility

● The extender pattern
● An application component, called the extender, listens 

for bundles to be started, and stopped
● On startup, the extender probes bundles to see if they 

are extensions
– Typically, extension contain special metadata or resources to 

indicate they provide an extension
● When an extension is started, the extender integrates 

the extension into the application
● When an extension is stopped, the extender removes 

the extension from the application



Service-based dynamism

● Service lifecycle state provides a hook for service-
based dynamic extensibility

● Still overall controlled by bundle state, but more fine 
grained

● Treats the service registry as a whiteboard
● A reverse way to create a service

● An application component listens for services of a 
particular type to be added and removed

● On addition, the service is integrated into the 
application

● On removal, the service is removed from the 
application



Wrap up

● (Dynamic) Services and a service registry are 
needed in Java

● The OSGi framework provides concepts we need
● But requires bottom-up commitment

● PojoSR allows you to use OSGi concepts in 
standard Java

● Makes it possible to leverage existing OSGi technology, 
like iPOJO

● A top-down approach of adopting services can help 
ease migration to more modular code

● Works so well that OSGi is thinking of standardizing 
this approach



Felix Connect



Questions?
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