
Felix Connect

Karl Pauls

ApacheCon Europe 2012

Slides together with Richard S. Hall

$ whoami

● Karl Pauls
● Member Apache Software Foundation

– Felix, ACE, Incubator: Celix
● Co-author of „OSGi in Action“

karlpauls@gmail.com

mailto:karlpauls@gmail.com

Outline

● Motivating µServices
● Procedures
● Objects
● Interfaces
● Factories
● Dependency injection

● Service orientation
● PojoSR
● Felix Connect

Motivating µServices

Motivating µServices

Data encapsulation/abstraction

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

Procedures

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

byte[4096] canvas;

void mouseClickCallback(int x, int y) {
 drawCircle(x, y, 100);
}

void drawCircle(int x, int y, int r) {
 ...
 // draws into canvas
 ...
}

Procedures

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

byte[4096] canvas;

void mouseClickCallback(int x, int y) {
 drawCircle(x, y, 100);
}

void drawCircle(int x, int y, int r) {
 ...
 // draws into canvas
 ...
}

Procedures

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

byte[4096] canvas;

void mouseClickCallback(int x, int y) {
 drawCircle(x, y, 100);
}

void drawCircle(int x, int y, int r) {
 ...
 // draws into canvas
 ...
}

Procedures

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

byte[4096] canvas;

void mouseClickCallback(int x, int y) {
 drawCircle(x, y, 100);
}

void drawCircle(int x, int y, int r) {
 ...
 // draws into canvas
 ...
}

Procedures

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

byte[4096] canvas;

void mouseClickCallback(int x, int y) {
 drawCircle(x, y, 100);
}

void drawCircle(int x, int y, int r) {
 ...
 // draws into canvas
 ...
}

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

Objects

public abstract class Shape {
 public void draw(Canvas c);
}
public class Paint {
 private Canvas;
 private Shape;
 public Paint(Canvas canvas, Shape shape) { … }

 public void mouseClick(int x, int y) {
 shape.draw(canvas, x, y);
 }
 public static void main() {
 new Paint(
 new Canvas(),
 new Circle(100));
 }
}

Objects

public abstract class Shape {
 public void draw(Canvas c);
}
public class Paint {
 private Canvas;
 private Shape;
 public Paint(Canvas canvas, Shape shape) { … }

 public void mouseClick(int x, int y) {
 shape.draw(canvas, x, y);
 }
 public static void main() {
 new Paint(
 new Canvas(),
 new Circle(100));
 }
}

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

Objects

public abstract class Shape {
 public void draw(Canvas c);
}
public class Paint {
 private Canvas;
 private Shape;
 public Paint(Canvas canvas, Shape shape) { … }

 public void mouseClick(int x, int y) {
 shape.draw(canvas, x, y);
 }
 public static void main() {
 new Paint(
 new Canvas(),
 new Circle(100));
 }
}

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

Objects

public abstract class Shape {
 public void draw(Canvas c);
}
public class Paint {
 private Canvas;
 private Shape;
 public Paint(Canvas canvas, Shape shape) { … }

 public void mouseClick(int x, int y) {
 shape.draw(canvas, x, y);
 }
 public static void main() {
 new Paint(
 new Canvas(),
 new Circle(100));
 }
}

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

Objects

public abstract class Shape {
 public void draw(Canvas c);
}
public class Paint {
 private Canvas;
 private Shape;
 public Paint(Canvas canvas, Shape shape) { … }

 public void mouseClick(int x, int y) {
 shape.draw(canvas, x, y);
 }
 public static void main() {
 new Paint(
 new Canvas(),
 new Circle(100));
 }
}

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

Interfaces

public interface Shape {
 public void draw(Canvas c);
}
public class Paint {
 private Canvas;
 private Shape;
 public Paint(Canvas canvas, Shape shape) { … }

 public void mouseClick(int x, int y) {
 shape.draw(canvas, x, y);
 }
 public static void main() {
 new Paint(
 new Canvas(),
 new Circle(100));
 }
}

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

Interfaces

public interface Shape {
 public void draw(Canvas c);
}
public class Paint {
 private Canvas;
 private Shape;
 public Paint(Canvas canvas, Shape shape) { … }

 public void mouseClick(int x, int y) {
 shape.draw(canvas, x, y);
 }
 public static void main() {
 new Paint(
 new Canvas(),
 new Circle(100));
 }
}

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

Interfaces

public interface Shape {
 public void draw(Canvas c);
}
public class Paint {
 private Canvas;
 private Shape;
 public Paint(Canvas canvas, Shape shape) { … }

 public void mouseClick(int x, int y) {
 shape.draw(canvas, x, y);
 }
 public static void main() {
 new Paint(
 new Canvas(),
 new Circle(100));
 }
}

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

Factories

public class Paint {
 …
 public static void main() {
 new Paint(
 new Canvas(),
 ShapeFactory.createShape());
 }
}
public class ShapeFactory {
 public static Shape createShape() {
 return Class.forName(
 System.getProperty("shapefactory.shapeimpl"));
 }
} Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

Factories

public class Paint {
 …
 public static void main() {
 new Paint(
 new Canvas(),
 ShapeFactory.createShape());
 }
}
public class ShapeFactory {
 public static Shape createShape() {
 return Class.forName(
 System.getProperty("shapefactory.shapeimpl"));
 }
} Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

Factories

public class Paint {
 …
 public static void main() {
 new Paint(
 new Canvas(),
 ShapeFactory.createShape());
 }
}
public class ShapeFactory {
 public static Shape createShape() {
 return Class.forName(
 System.getProperty("shapefactory.shapeimpl"));
 }
} Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

Factories

public class Paint {
 …
 public static void main() {
 new Paint(
 new Canvas(),
 ShapeFactory.createShape());
 }
}
public class ShapeFactory {
 public static Shape createShape() {
 return Class.forName(
 System.getProperty("shapefactory.shapeimpl"));
 }
} Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

Dependency injection

public class Paint implements ShapeConsumer {
 @Inject
 public Paint(Shape shape) { … }
}
public class ShapeModule extends AbstractModule {
 @Override
 protected void configure() {
 bind(Shape.class).to(Circle.class);
 bind(ShapeConsumer.class).to(Paint.class);
 }
}

Injector injector = Guice.createInjector(new ShapeModule());
ShapeConsumer consumer = injector.getInstance(ShapeConsumer.class);

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

Dependency injection

public class Paint implements ShapeConsumer {
 @Inject
 public Paint(Shape shape) { … }
}
public class ShapeModule extends AbstractModule {
 @Override
 protected void configure() {
 bind(Shape.class).to(Circle.class);
 bind(ShapeConsumer.class).to(Paint.class);
 }
}

Injector injector = Guice.createInjector(new ShapeModule());
ShapeConsumer consumer = injector.getInstance(ShapeConsumer.class);

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

Dependency injection

public class Paint implements ShapeConsumer {
 @Inject
 public Paint(Shape shape) { … }
}
public class ShapeModule extends AbstractModule {
 @Override
 protected void configure() {
 bind(Shape.class).to(Circle.class);
 bind(ShapeConsumer.class).to(Paint.class);
 }
}

Injector injector = Guice.createInjector(new ShapeModule());
ShapeConsumer consumer = injector.getInstance(ShapeConsumer.class);

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

Dependency injection

public class Paint implements ShapeConsumer {
 @Inject
 public Paint(Shape shape) { … }
}
public class ShapeModule extends AbstractModule {
 @Override
 protected void configure() {
 bind(Shape.class).to(Circle.class);
 bind(ShapeConsumer.class).to(Paint.class);
 }
}

Injector injector = Guice.createInjector(new ShapeModule());
ShapeConsumer consumer = injector.getInstance(ShapeConsumer.class);

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

Context and Dependency Injection (CDI)

public class Paint implements ShapeConsumer {
 @Inject
 public Shape shape;
}
@Default
public class CircleProducer {
 @Produces
 protected Shape createShape() {
 return new CircleImpl();
 }
}

Paint paint = beanContainer.getBeanByType(Paint.class);

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

Context and Dependency Injection (CDI)

public class Paint implements ShapeConsumer {
 @Inject
 public Shape shape;
}
@Default
public class CircleProducer {
 @Produces
 protected Shape createShape() {
 return new CircleImpl();
 }
}

Paint paint = beanContainer.getBeanByType(Paint.class);

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

Context and Dependency Injection (CDI)

public class Paint implements ShapeConsumer {
 @Inject
 public Shape shape;
}
@Default
public class CircleProducer {
 @Produces
 protected Shape createShape() {
 return new CircleImpl();
 }
}

Paint paint = beanContainer.getBeanByType(Paint.class);

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

Service Orientation

Service orientation

● Promoting a service-oriented interaction pattern

Service orientation

● Promoting a service-oriented interaction pattern

Service
Registry
Service
Registry

Service orientation

● Promoting a service-oriented interaction pattern

Publish

Service
Registry
Service
Registry

Service
Provider
Service
Provider

Service
Description

Service orientation

● Promoting a service-oriented interaction pattern

Publish Find

Service
Registry
Service
Registry

Service
Provider
Service
Provider

Service
Consumer
Service

Consumer

Service
Description

Service orientation

● Promoting a service-oriented interaction pattern

Publish Find

Bind

Service
Registry
Service
Registry

Service
Provider
Service
Provider

Service
Consumer
Service

Consumer

Service
Description

µServices

● Interface-based programming, but more
● Service Registry

● Centrally accessible
● Browsable
● Notifications

● Service Registry Benefits
● Consuming code is in control of provider selection

– But not provider instantiation and configuration
● Provider code is in control of when to provide
● Promotes very loose coupling and late binding

META-INF/services

ServiceLoader<ShapeFactory> factories =
 ServiceLoader.load(ShapeFactory.class);

List<Shape> shapes = …

for (ShapeFactory factory : factories) {
shapes.add(factory.next().createShape());

}

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

OSGi services

● OSGi framework provides the concepts we need
● Centralized service registry
● Consumer has control over selection
● Provider has control over when to provide
● Plus full-blown deployment and packaging modularity

with run-time dynamism

OSGi service advantages

● Lightweight services
● Direct method invocation

● Structured code
● Promotes separation of interface from implementation
● Enables reuse, substitutability, loose coupling, and late

binding
● Dynamics

● Loose coupling and late binding make it possible to
support run-time management of module

Using a service (1/2)

● BundleContext allows bundles to find services

public interface BundleContext {
 …
 ServiceReference[] getServiceReferences(...);
 ServiceReference getServiceReference(...);
 Object getService(...);
 boolean ungetService(...);
}

Using a service (2/2)

public class Paint implements BundleActivator {
 public void start(BundleContext context) {
 ServiceReference ref = context.getServiceReference(
 com.foo.Shape.class.getName());
 if (ref != null) {
 Shape s = (Hello) context.getService(ref);
 if (s != null) {
 ...
 context.ungetService(h);
 }
 }
 }
 public void stop(BundleContext context) {
 }
} Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

Publishing a service (1/2)

● BundleContext allows bundles to publish services

public interface BundleContext {
 ...
 ServiceRegistration registerService(...);
 ...
}

Publishing a service (2/2)

public class Activator implements BundleActivator {
 private ServiceRegistration reg = null;

 public void start(BundleContext context) {
 reg = context.registerService(
 com.foo.Shape.class.getName(),
 new Circle(100), null);
 }
 public void stop(BundleContext context) {
 reg.unregister();
 }
}

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

Service dynamism

● Services can be monitored
BundleContext.addServiceListener()

public interface ServiceListener extends EventListener {
 public void serviceChanged(ServiceEvent event);
}

public class ServiceEvent extends EventObject {
 public final static int REGISTERED = 0x00000001;
 public final static int MODIFIED = 0x00000002;
 public final static int UNREGISTERING = 0x00000004;
 public ServiceReference getServiceReference() { … }
 public int getType() { … }
 ...
}

Data abstraction/encapsulation

Provider/consumer coupling

Provider/consumer control

Provider/consumer dynamism

Services and dependency injection

● Services and dependency injection
● Complementary

● Use POJOs
● Avoid dependencies on OSGi API

● Here is an iPOJO component providing the service

Apache Felix iPOJO example

@Component
@Provides
public class Circle implements Shape {
...
}

Apache Felix iPOJO example

● Here is an iPOJO component providing the service

● Implementation with service dependency
@Component
public class Paint {
 @Requires
 private Shape shape;

 public void useShape() {
 ...
 }
}

@Component
@Provides
public class Circle implements Shape {
...
}

Apache Felix iPOJO example

● Here is an iPOJO component providing the service

● Implementation with service dependency

Bundle activator no longer necessary,
but lifecycle control still possible

@Component
@Provides
public class Circle implements Shape {
...
}

@Component
public class Paint {
 @Requires
 private Shape shape;

 public void useShape() {
 ...
 }
}

Services and dependency Injection

● Advantages when combined with service orientation
● Dependency injection no longer needs global view

– Information localized to just the provider/consumer
● No longer restricted to a single DI framework

– Different DI frameworks can play together via the service
registry

OSGi service disadvantages

● The downside to OSGi is that it requires a bottom-
up commitment

● You need to convert all of your code into proper
modules to take advantage of services

● A top-down approach of adopting services can help
ease migration to more modular code

PojoSR
and (OSGi) µServices for the rest of us

What is PojoSR?

● It largely removes the modularity layer from the
OSGi framework

● Provides
● A centralized service registry based on OSGi API
● Lifecycle hooks for JAR files
● A “light” OSGi framework for the class path

● Available at http://pojosr.googlecode.com

Why this approach?

● OSGi API is a standard with years of experience
behind it

● Can re-use OSGi modules (a.k.a. bundles) and/or
technology

● Can leverage services without having to completely
modularize first (i.e., top-down)

● Provides a path to full-blown modularity
● Go see BJ Hargrave and Peter Kriens slides on

“Service Migration First”

What you keep

● Bundle activator
● JAR file lifecycle hook

– Gives JAR file a lifecycle state (started or stopped)
● Two simple methods (start()/stop())

– Give you a bundle context
● Bundle context

● Allows you to
– Lookup services
– Provide services
– Listen for services

● or you can still use iPOJO instead

What you lose

● Module-private encapsulation
● Side-by-side versions
● Dependency consistency checking
● Dynamic module deployment
● Full OSGi compatibility

What you don't lose

● Surprisingly, some of the seemingly more advanced
OSGi dynamism features

● Bundle-based dynamism
● Service-based dynamism

● How is this possible?

Bundle-based dynamism

● Bundle lifecycle state provides a hook for bundle-
based dynamic extensibility

● The extender pattern
● An application component, called the extender, listens

for bundles to be started, and stopped
● On startup, the extender probes bundles to see if they

are extensions
– Typically, extension contain special metadata or resources to

indicate they provide an extension
● When an extension is started, the extender integrates

the extension into the application
● When an extension is stopped, the extender removes

the extension from the application

Service-based dynamism

● Service lifecycle state provides a hook for service-
based dynamic extensibility

● Still overall controlled by bundle state, but more fine
grained

● Treats the service registry as a whiteboard
● A reverse way to create a service

● An application component listens for services of a
particular type to be added and removed

● On addition, the service is integrated into the
application

● On removal, the service is removed from the
application

Wrap up

● (Dynamic) Services and a service registry are
needed in Java

● The OSGi framework provides concepts we need
● But requires bottom-up commitment

● PojoSR allows you to use OSGi concepts in
standard Java

● Makes it possible to leverage existing OSGi technology,
like iPOJO

● A top-down approach of adopting services can help
ease migration to more modular code

● Works so well that OSGi is thinking of standardizing
this approach

Felix Connect

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61

