
1

Text categorization with
Lucene and Solr

Tommaso Teofili
tommaso [at] apache [dot] org

2

About me
l  ASF member having fun with:
l  Lucene / Solr
l  Hama
l  UIMA
l  Stanbol
l  … some others

l  SW engineer @ Adobe R&D

3

Agenda
l  Classification
l  Lucene classification module
l  Solr text categorization services
l  Conclusions

4

Classification
l  Let the algorithm assign one or more labels

(classes) to some item given some
previous knowledge
l  Spam filter
l  Tagging system
l  Digit recognition system
l  Text categorization
l  etc.

5

Classification?
why with Lucene?

6

The short story
l  Lucene already has a lot of features for

common information retrieval needs
l  Postings
l  Term vectors
l  Statistics
l  Positions
l  TF / IDF
l  maybe Payloads
l  etc.

l  We may avoid bringing in new components
to do classification just leveraging what we
get for free from Lucene

7

The (slightly) longer story #1
l  While playing with NLP stuff
l  Need to implement a naïve bayes classifier
l  Not possible to plug in stuff requiring touching

the architecture
l  Not really interested in (near) real time

performance
l  Iteration 1
l  Plain in memory Java stuff

l  Iteration 2
l  Same stuff but using Lucene instead of loading

things into memory
l  Too much faster J

8

The (slightly) longer story #2
l  So I realized
l  Lucene has so many features stored you can

take advantage of for free
l  Therefore writing the classification algorithm is

relatively simple
l  In many cases you’re just not adding anything to

the architecture
l  Your Lucene index was already there for searching

l  Lucene index is, to some extent, already a model
which we just need to “query” with the proper
algorithm

l  And it is fast enough

9

Lucene classification module
l  Work in progress on trunk
l  LUCENE-4345
l  Establishing classification API
l  With currently two implementations

l  Naïve bayes
l  K nearest neighbor

10

Lucene classification module
l  Classifier API
l  Training
l  void train(atomicReader, contentField,

classField, analyzer) throws IOException

l  atomicReader : the reader on the Lucene index to
use for classification

l  still unsure if IR’d be better
l  textFieldName : the name of the field which contains

documents’ texts
l  classFieldName : the name of the field which contains

the class assigned to existing documents
l  analyzer : the item used for analyzing the unseen

texts

11

Lucene classification module
l  Classifier API
l  Classifying
l  ClassificationResult assignClass(String text)

throws IOException

l  text: the unseen text of the document to classify
l  ClassificationResult : the object containing the

assigned class along with the related score

12

K Nearest neighbor classifier
l  Fairly simple classification algorithm
l  Given some new unseen item
l  I search in my knowledge base the k items

which are nearer to the new one
l  I get the k classes assigned to the k

nearest items
l  I assign to the new item the class that is

most frequent in the k returned items

13

K Nearest neighbor classifier
l  How can we do this in Lucene?
l  We have VSM for representing documents as

vectors and eventually find distances
l  Lucene MoreLikeThis module can do a lot for it
l  Given a new document

l  It’s represented as a MoreLikeThisQuery which filters
out too frequent words and helps on keeping only the
relevant tokens for finding the neighbors

l  The query is executed returning only the first k results
l  The result is then browsed in order to find the most

frequent class and that is then assigned with a score
of classFreq / k

14

Naïve Bayes classifier
l  Slightly more complicated
l  Based on probabilities
l  C = argmax(P(d|c) * P(c))
l  P(d|c) : likelihood
l  P(c) : prior
l  With some assumptions:

l  bag of words assumption: positions don't matter
l  conditional independence: the feature probabilities

are independent given a class

15

Naïve Bayes classifier
l  Prior calculation is easy
l  It’s the relative frequency of each class

#docsWithClassC / #docs
l  Likelihood is easy too because of the bag

of words assumption
l  P(d|c) := P(x1,..,xn|c) == P(x1|c)*...P(xn|c)
l  So we just need probabilities of single terms

l  P(x|c) := (tf of x in documents with class c + 1)/
(#terms in docs with class c + #docs)

16

Naïve Bayes classifier
l  Does the bag of words assumption affect

the classifier’s precision?
l  Yes in theory

l  in text documents (nearby) words are strictly
correlated

l  Not always in practice
l  depending on your index data it may or not have an

impact

17

Using different indexes
l  The Classifier API makes usage of an

AtomicReader to get the data for the
training

l  It must not be the very same index used for
every day index / search

l  For performance reasons
l  For enhancing classifier effectiveness

l  Using more specific analyzers
l  Indexing data in a different way

l  e.g. one big document for each class and use kNN (with a
small k) or TF-IDF similarity

18

Things to consider - bootstrapping
l  How are your first documents classified?
l  Manually

l  Categories are already there in the documents
l  Someone is explicitly charged to do that (e.g. article

authors) at some point in time
l  (semi) automatically

l  Using some existing service / library
l  With or without human supervision

l  In either case the classifier needs something to
be fed with to be effective

19

Things to consider – tokenizing
l  How are your content field tokenized?
l  Whitespace

l  It doesn’t work for each language
l  Standard
l  Sentence
l  What about using N-Grams?
l  What about using Shingles?

20

Things to consider - filtering
l  Some words may / should be filtered while
l  Training
l  Classifying

l  Often
l  Stopwords
l  Punctuation
l  Not relevant PoS tagged tokens

21

Raw benchmarking
l  Tried both algorithms on ~1M docs index
l  Naïve bayes is affected by the # of classes
l  kNN is affected by k being large

l  None of them took more than 1-2m to train
even with great number of classes or large
k values

22

From Lucene to Solr
l  The Lucene classifiers can be easily used

in Solr
l  As specific search services

l  A classification based more like this

l  While indexing
l  For automatic text categorization

23

Classification based MLT
l  Use case:
l  “give me all the documents that belong to the

same category of a new not indexed document”
l  Slightly different from basic MLT since it does

not return the nearest docs
l  That is useful if the user doesn’t want / need to

index the document and still want to find all the
other documents of the same category, whatever
this category means

24

Classification based MLT
l  ClassificationMLTHandler
l  String d = req.getParams().get(DOC);
l  ClassificationResult r = classifier.assignClass(d);
l  String c = r.getAssignedClass();
l  req.getSearcher().search(new TermQuery(new

Term(classFieldName, c)), rows);

25

Automatic text categorization
l  Once a doc reaches Solr
l  We can use the Lucene classifiers to

automate assigning document’s category
l  We can leverage existing Solr facilites for

enhancing the indexing pipeline
l  An UpdateChain can be decorated with one or

more UpdateRequestProcessors

26

Automatic text categorization
l  Configuration
l  <updateRequestProcessorChain name=“ctgr">
l  <processor

class=”solr.CategorizationUpdateRequestProces
sorFactory">

l  <processor
class="solr.RunUpdateProcessorFactory" />

l  </updateRequestProcessorChain>

27

Automatic text categorization
l  CategorizationUpdateRequestProcessor
l  void processAdd(AddUpdateCommand

cmd) throws IOException
l  String text = solrInputDocument.getFieldValue(“text”);
l  String class = classifier.assignClass(text);
l  solrInputDocument.addField(“cat”, class);

l  Every now and then need to retrain to get latest
stuff in the current index, but that can be done in
the background without affecting performances

28

Automatic text categorization
l  CategorizationUpdateRequestProcessor
l  Finer grained control
l  Use automatic text categorization only if a value

does not exist for the “cat” field
l  Add the classifier output class to the “cat” field

only if it’s above a certain score

29

Wrap up
l  Simple classifiers with no or little effort
l  No architecture change
l  Both available to Lucene and Solr
l  Still reasonably fast
l  A lot more can be done
l  Implement a MaxEnt Lucene based classifier

l  which takes into account words correlation

30

Thanks!

