

Integrating Social Apps with Content Driven Sites
using Apache Rave and Spring HMVC

Ate Douma

Apache Software Foundation Member
committer and PMC member for Apache Rave

Platform Architect at
open source WCM vendor Hippo

 ate@apache.org / www.onehippo.org

rave.apache.org

Agenda
● Slightly different scope of this presentation

● Brief introduction to Apache Rave

● Rave features, components and roadmap

● Rave Spring HMVC extension

● Rave JCR back-end and content services

● Demo

● Status and architectural choices

Scope of this presentation

Providing content driven sites with Apache Rave …
● takes more time and work than anticipated

● requires more dynamics than out-of-the-box Spring MVC
(as used by Rave) is capable of

● is implemented through a custom Rave extension called
Spring Hierarchical MVC (HMVC)

● but for now still is only available as the Rave sandbox module

● will need thorough community evaluation before adoption

Scope of this presentation

Thus:
● I cannot (yet) show truly content driven sites with Rave

● but I will demo a dynamic HMVC based page layout and
rendering

● and highlight some architectural choices to be made for further
usage and/or integration in Rave

Brief introduction to Apache Rave
● Started March 2011 in the Apache Incubator

● Graduated as Top Level Project March 2012

● A lightweight web and social mashup engine

● A highly customizable Java platform for widgets,
gadgets and personalized content

● Targets websites and mobile devices for
(social) services, intranet and extranet solutions

Brief introduction to Apache Rave

Quick impressions

Brief introduction to Apache Rave

Quick impressions

Brief introduction to Apache Rave

Quick impressions

Brief introduction to Apache Rave

Example: In production at University of Groningen (NL)

My University portal, 45K users (student + staff)

Brief introduction to Apache Rave

Example: In production at University of Groningen (NL)

My University portal, 45K users (student + staff)

Rave features, components and roadmap

Features
● Skinnable, Twitter Bootstrap UI

● Mobile and desktop view

● User profile page, friends connections

● Page management, personalization, page sharing

● Widget store, widget rating, commenting

● Admin interface for security, widgets, preferences

Rave features, components and roadmap

Features
● Spring Security, JPA, LDAP, OpenID, SAML2, OAuth

● Pluggable persistence model, Apache OpenJPA

● Generalized Rave Widget model, OpenSocial, W3C, …

● Basic inter-widget communication, OpenAJAX Hub

● Spring MVC, Spring MVC, Apache Tiles, REST APIs

● Apache Shindig (OpenSocial), Apache Wookie (W3C Widgets)

Rave features, components and roadmap

Rave components and deployment model

Rave features, components and roadmap

Roadmap and desired features
● Multiple persistence back-ends, MongoDB*, JCR**

● Improved user page model, spaces, security

● More and extended social capabilities

● Enhanced inter-widget communication

● More enhanced front-end customizations

● Dynamic site, page layouts and templates**

● Freemarker templates support**

● Dynamic web content, resources, images, etc.**

 * Rave mongo branch, go see the
 “Mongo, its all the Rave” presentation later today, by Matt Franklin

** Rave content-services sandbox, topic of this presentation ☺

Rave Spring HMVC extension

Current front-end render model ('plain' Spring MVC):
● @RequestMapping annotated controller methods

note: since Spring 3.1+ the primary supported usage

● ties the URL mapping at compile time to the method

● the mapped method is responsible for the full data model
needed for every render element on the page,
it needs to be aware of the full page requirements

● Uses Apache Tiles templating to map and wrap the controller
method View to a full page layout

Rave Spring HMVC extension

Limitations of standard Spring MVC:
● Controllers cannot be runtime mapped to other URL routes:

no runtime route (re)mapping support

● Front-end linking to (other) controllers is 'hard-wired'

● Controllers needs to be 'all knowing' of the page requirements:
modifying page structures and layouts may impact changes to
many/all controllers

● DRY (Don't Repeat Yourself) is difficult:
many controllers duplicate logic (like for menu handling)

● Tiles templates difficult to manage and 'tweak' when you need
changes on specific pages only

Rave Spring HMVC extension

Hierarchical MVC:
● HMVC is a known* pattern you’ll find applied by most portal

engines and many CMS driven websites

● Frameworks like alloy and kohana (PHP) are based on it, also
our Hippo CMS site framework

● It allows building and rendering a page through a set of loosely
coupled controllers, instead of only one

● Child controllers only are responsible for their own fragment
functionality and may be reused across pages, or even multiple
times within the same page

● Pages themselves become reusable building blocks

* http://techportal.inviqa.com/2010/02/22/scaling-web-applications-with-hmvc/

Rave Spring HMVC extension

The Rave Spring HMVC extension features:
● external 'route' mapping to wire pages or services

● external hierarchical page structure mapping named fragments to
controllers

● page fragment inheritance and merge, custom properties and
render/template “viewName” configuration

● mapping definitions in XML or JCR/JSON, auto-reload on changes

● wire HandlerInterceptor(s) to specific routes and/or fragments

● a @Routed controller annotation to distinguish from @Controller

● standard @RequestMapping or extra @Named annotation to map
controller methods in a route->page->fragment URL context

● reverse route and name (path) or id based url-mapping support

Rave Spring HMVC extension
Example routes and page fragment definitions:
<route path="/" component="/userPage" referenceId="homeRoute"/>
<route path="/page/view/{pageId}" component="/userPage" referenceId="pageRoute"/>
<route path="/person/{username:.*}" component="/userProfile" referenceId="userProfileRoute"/>
<route path="/person/id/{userid:.*}" component="/userProfile"/>

<pageFragment name="userProfile" interceptors="userProfile" extends="extended">
 <property name="topnav.userProfile">true</property>
 <pageFragment name="body" viewName="pages/userprofile/page-body">
 <pageFragment name="form" viewName="pages/userprofile/page-form"
 controller="org.apache.rave.portal.web.mvc.controller.UserProfileFormController"/>
 <pageFragment name="tabs" viewName="layouts/person_profile"/>
 <pageFragment name="content" viewName="pages/userprofile/page-content"/>
 </pageFragment>
</pageFragment>

<pageFragment name="extended" viewName="pages/userpage/page" extends="standard">
 <pageFragment name="header" viewName="pages/userpage/page-header"/>
</pageFragment>

<pageFragment name="standard" viewName="pages/userpage/page">
 <pageFragment name="header" viewName="pages/header"/>
 <pageFragment name="footer" viewName="pages/footer"/>
</pageFragment>

Rave JCR back-end and content services

Features:
● extends Rave to dynamically manage and retrieve content,

markup, resources, images, etc.

● custom and extendable content domain models mapped to a
hierarchical Java Content Repository (JCR), Apache Jackrabbit

● leverages jackrabbit-ocm POJO bean persistence manager

● provides JCR back-end for Rave Spring HMVC configurations

● content bootstrapping and import/export in JSON format

● JSP/Freemarker tags

● optional JCR Web Console for development and administration*

* using and extending the open source (Apache License) Hippo JCR Console

Rave JCR back-end and content services

Rave content services components and deployment model

Demo

Status and architectural choices

Rave Spring HMVC status:
● it already works, but more extensive

use-cases most likely will bring up more challenges

● can be used concurrently with 'standard' Spring MVC,
allows for gradual migration, but how practical is that?

● current implementation was discussed with and reviewed by
Rossen Stoyanchev, Springsource architect for SpringMVC,
and he is interested in this solution, but ...

● using and implementing a HMVC based solution is different
from what Spring developers are accustomed to, even if on
API level there is hardly any difference

● it depends on current Spring MVC behavior, alignment with
newer Spring versions is not ensured

● is or should using Spring MVC be the (only) solution?

Status and architectural choices

Rave JCR back-end and content services status:
● (very) basic level of functionality now is available and working

● bringing this to production quality level, and scalable, will
require much more effort

● will also need more advanced features build on top
(content workflow, versioning, type editing, security, etc.)

● not everyone will need (or want) this, should it remain optional?

● there are other JCR based solutions available who already
have these advanced features, albeit not readily usable within
the ASF

● should Rave invest in and depend on this heavily, or maybe
leave it to the community to integrate on this level themselves?

Thank you for your attention

Apache Rave
● http://rave.apache.org

● http://rave.apache.org/mailing-lists.html

● http://rave.apache.org/source.html

● http://rave.apache.org/downloads.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

