

Cassandra 2012:
What's New & Upcoming

Sam Tunnicliffe

● sam@datastax.com
● DSE : integrated Big Data platform

– Built on Cassandra

– Analytics using Hadoop (Hive/Pig/Mahout)

– Enterprise Search with Solr

Cassandra in 2012
● Cassandra 1.1 – April 2012
● Cassandra 1.2 – November 2012
● What's on the roadmap

Release Schedule

● Currently working to six month release cycle

● Minor releases as and when necessary

Version Release Date

0.5 24 Jan 2010

0.6 13 April 2010

0.7 9 January 2011

0.8 2 June 2011

1.0 18 October 2011

1.1 24 April 2012

1.2 End November 2012 ?

Global Row & Key Caches
● Prior to 1.1 separate row & key caches per

column family
● Since 1.1 single row cache & single key

cache shared across all column families
● Simpler configuration

– Globally: {key,row}_cache_size_in_mb

– Per CF: ALL|NONE|KEYS_ONLY|ROWS_ONLY

More Granular Storage Config
● Pre 1.1 one storage location per keyspace

– /var/lib/cassandra/ks/cf-hc-1-Data.db

● In 1.1 one location per column family
– /var/lib/cassandra/ks/cf/ks-cf-hc-1-Data.db

● Allows you to pin certain data to particular
storage system

Why?

http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html

Why?

http://www.slideshare.net/rbranson/cassandra-and-solid-state-drives

Row Level Isolation
● Batched writes within row have always

been atomic
● Batched writes within row are now also

isolated

Row Level Isolation
● So Writing

● Followed by

● No reader ever sees either

UPDATE foo
SET column_x='a' AND column_y='1'
WHERE id='bar';

UPDATE foo
SET column_x='b' AND column_y='2'
WHERE id='bar';

{column_a:'a', column_b:'2'}

{column_x:'b', column_y:'1'}

Misc Other Stuff
● Windows off heap cache
● write survey mode
● commitlog segment pre-allocation/recycling
● abortable compactions
● multi threaded streaming
● Hadoop improvements

– utilise secondary indexes from Hadoop

– better wide row support

CQL 3.0
● Beta in 1.1, finalized in 1.2
● Motivations

– Better support for wide rows

– Native syntax for composites

CQL 3.0
● Wide Rows
● Composites
● Transposition

CQL 3.0
CREATE TABLE comments (
 id text,
 posted_at timestamp,
 author text,
 content text,
 karma int,
 PRIMARY KEY(id, posted_at)
);

INSERT INTO comments (id, posted_at, author, content, karma)
VALUES ('article_x', '2012-10-31T08:00:00', 'freddie', 'awesome', 100);

INSERT INTO comments (id, posted_at, author, content, karma)
VALUES ('article_x', '2012-10-31T09:59:59', 'rageguy', 'F7U12', 0);

CQL 3.0 Transposition
{ article_x : { 2012-10-31T08:00:00 + author => freddie }
 { 2012-10-31T08:00:00 + content => awesome }
 { 2012-10-31T08:00:00 + karma => 100 }

 { 2012-10-31T09:59:59 + author => rageguy }
 { 2012-10-31T09:59:59 + content => F7U12 }
 { 2012-10-31T09:59:59 + karma => 1 }
}
{ article_y : { 2012-10-28T15:30:12 + author...

cqlsh:hn> select * from comments where id = 'article_x';

 id | posted_at | author | content | karma
-----------+---------------------+---------+---------+-------
 article_x | 2012-10-31 08:00:00 | freddie | awesome | 100
 article_x | 2012-10-31 09:59:59 | rageguy | F7U12 | 1

CQL 3.0 Transposition
{ article_x : { 2012-10-31T08:00:00 + author => freddie }
 { 2012-10-31T08:00:00 + content => awesome }
 { 2012-10-31T08:00:00 + karma => 100 }

 { 2012-10-31T09:59:59 + author => rageguy }
 { 2012-10-31T09:59:59 + content => F7U12 }
 { 2012-10-31T09:59:59 + karma => 1 }
}
{ article_y : { 2012-10-28T15:30:12 + author...

cqlsh:hn> select * from comments where id = 'article_x'
 and posted_at <= '2012-10-31T08:00:00' ;

 id | posted_at | author | content | karma
-----------+---------------------+---------+---------+-------
 article_x | 2012-10-31 08:00:00 | freddie | awesome | 100

CQL 3.0 Collections
● Typed collections – Set, Map, List
● Good fit for denormalizing small collections
● Less ugly, more efficient than previous

approach
● Composites under the hood
● Each element stored as one column

– So each can have an individual TTL

CQL 3.0 Sets
● Collection of typed elements
● No duplicate elements
● Actually a sorted set

– Ordering determined by natural order elements

CQL 3.0 Sets
CREATE TABLE users (
 user_id text PRIMARY KEY,
 first_name text,
 last_name text,
 emails set<text>
);

 INSERT INTO users (user_id, first_name, last_name, emails)
 VALUES('sam', 'Sam', 'Tunnicliffe',
 {'sam@beobal.com', 'sam@datastax.com'});

● Set entire value with set literal

CQL 3.0 Sets
● Insert and remove

● No distinction between empty and null set

UPDATE users
SET emails = emails + {'sam@cohodo.net'}
WHERE user_id = 'sam';

UPDATE users
SET emails = emails – {'sam@cohodo.net'}
WHERE user_id = 'sam'

UPDATE users
SET emails = {}
WHERE user_id = 'sam';

DELETE emails
FROM users
WHERE user_id = 'sam';

CQL 3.0 Lists
● Ordering determined by user, not by

natural ordering of elements
● Allows multiple occurrences of same value

CQL 3.0 Lists
ALTER TABLE users ADD todo list<text>;

UPDATE users
SET todo = ['get to Sinsheim', 'give presentation']
WHERE user_id = 'sam';

UPDATE users
SET todo = ['finish slides'] + todo
WHERE user_id = 'sam';

UPDATE users
SET todo = todo + ['drink beer']
WHERE user_id = 'sam';

● Set, Prepend & Append

CQL 3.0 Lists

UPDATE users
SET todo[2] = 'slow down'
WHERE user_id = 'sam';

DELETE todo[3]
FROM users
WHERE user_id = 'sam';

● Access elements by index
– Less performant, requires read of entire list

● Remove by value
UPDATE users
SET todo = todo – ['finish slides']
WHERE user_id = 'sam';

CQL 3.0 Maps
● Collection of typed key/value pairs
● Like sets, maps are actually ordered

– Ordering determined by the type of the keys

● Operate on entire collection or individual
element by key

CQL 3.0 Maps

● Set entire value with map literal

● Access elements by key

ALTER TABLE users ADD accounts map<text, text>;

UPDATE users
SET accounts = { 'twitter' : 'beobal',
 'irc' : 'sam___' }
WHERE user_id = 'sam';

UPDATE users
SET accounts['irc'] = 'beobal@freenode.net'
WHERE user_id = 'sam';

DELETE accounts['twitter']
FROM users
WHERE user_id = 'sam';

CQL 3.0 Collections
● Can only retrieve a collection in its entirety

– Collections are not intended to be very large

– Not a replacement for a good data model

● Typed but cannot currently be nested
– Can't define a list<list<int>>

● No support for secondary indexes
– On the roadmap but not yet implemented

CQL 3.0 Binary Protocol
● Motivations

– Ability to optimize for specific use-cases

– Reduce client dependencies

– Lay groundwork for future enhancements such
as streaming/paging

CQL 3.0 Binary Protocol
● Framed protocol, designed natively for

CQL 3.0
● Built on Netty
● Java, Python & C drivers in development
● Switched off by default in 1.2
● Thrift API will remain, no breaking API

changes

Virtual Nodes
● Evolution of Cassandra's distribution model
● Nodes own multiple token ranges
● Big implications for operations

– Replacing failed nodes

– Growing / shrinking cluster

● Stay put for Eric

Concurrent Schema Changes
● Online schema changes introduced in 0.7
● Initially schema changes needed serializing

– Update schema

– Wait for propagation before making next
change

● Mostly fixed in 1.1
● Completed in 1.2

– Concurrent ColumnFamily creation

Better JBOD Support
● Growing data volumes and compaction

requirements means moar disk
● Pre 1.2 best practice is to run RAID10
● Improvements to handling disk failures

– disk_failure_policy : stop | best_effort | ignore

– best_effort implications for writes / reads

● Better write balancing for less contention

Misc Other Stuff
● Query Tracing
● Speedup slicing wide rows from disk
● Atomic Batches

Future Plans
● Improved caching for wide rows
● Remove 2-phase compaction
● Remove SuperColumns internally

 Thank you

