
HBASE SCHEMA DESIGN
and Cluster Sizing Notes
ApacheCon Europe, November 2012

Lars George
Director EMEA Services

About Me

•  Director EMEA Services @ Cloudera
•  Consulting on Hadoop projects (everywhere)

•  Apache Committer
•  HBase and Whirr

•  O’Reilly Author
•  HBase – The Definitive Guide

•  Now in Japanese!

•  Contact
•  lars@cloudera.com
•  @larsgeorge

日本語版も出ました!	

Agenda

•  HBase Architecture
•  Schema Design
•  Cluster Sizing Notes

HBASE ARCHITECTURE

HBase Tables

HBase Tables

HBase Tables

HBase Tables and Regions

•  Table is made up of any number if regions
•  Region is specified by its startKey and endKey

•  Empty table: (Table, NULL, NULL)
•  Two-region table: (Table, NULL, “com.cloudera.www”)

and (Table, “com.cloudera.www”, NULL)
•  Each region may live on a different node and is

made up of several HDFS files and blocks, each
of which is replicated by Hadoop

Distribution

HBase Tables

•  Tables are sorted by Row in lexicographical order
•  Table schema only defines its column families

•  Each family consists of any number of columns
•  Each column consists of any number of versions
•  Columns only exist when inserted, NULLs are free
•  Columns within a family are sorted and stored

together
•  Everything except table names are byte[]

(Table, Row, Family:Column, Timestamp) -> Value

HBase Architecture

HBase Architecture (cont.)

•  HBase uses HDFS (or similar) as its reliable
storage layer

•  Handles checksums, replication, failover
•  Native Java API, Gateway for REST, Thrift, Avro
•  Master manages cluster
•  RegionServer manage data
•  ZooKeeper is used the “neural network”

•  Crucial for HBase
•  Bootstraps and coordinates cluster

HBase Architecture (cont.)

•  Based on Log-Structured Merge-Trees (LSM-Trees)
•  Inserts are done in write-ahead log first
•  Data is stored in memory and flushed to disk on

regular intervals or based on size
•  Small flushes are merged in the background to keep

number of files small
•  Reads read memory stores first and then disk based

files second
•  Deletes are handled with “tombstone” markers
•  Atomicity on row level no matter how many columns

•  keeps locking model easy

MemStores

•  After data is written to the WAL the RegionServer
saves KeyValues in memory store

•  Flush to disk based on size, see
hbase.hregion.memstore.flush.size

•  Default size is 64MB
•  Uses snapshot mechanism to write flush to disk

while still serving from it and accepting new data
at the same time

•  Snapshots are released when flush has
succeeded

Compactions
•  General Concepts

•  Two types: Minor and Major Compactions
•  Asynchronous and transparent to client
•  Manage file bloat from MemStore flushes

•  Minor Compactions
•  Combine last “few” flushes
•  Triggered by number of storage files

•  Major Compactions
•  Rewrite all storage files
•  Drop deleted data and those values exceeding TTL and/or number of

versions
•  Triggered by time threshold
•  Cannot be scheduled automatically starting at a specific time (bummer!)
•  May (most definitely) tax overall HDFS IO performance

Tip: Disable major compactions and schedule to run manually (e.g.
cron) at off-peak times

Block Cache
•  Acts as very large, in-memory distributed cache
•  Assigned a large part of the JVM heap in the RegionServer process,

see hfile.block.cache.size
•  Optimizes reads on subsequent columns and rows
•  Has priority to keep “in-memory” column families in cache

 if(inMemory) {
 this.priority = BlockPriority.MEMORY;
 } else {
 this.priority = BlockPriority.SINGLE;
 }

•  Cache needs to be used properly to get best read performance
•  Turn off block cache on operations that cause large churn
•  Store related data “close” to each other

•  Uses LRU cache with threaded (asynchronous) evictions based on
priorities

Region Splits
•  Triggered by configured maximum file size of any

store file
•  This is checked directly after the compaction call to

ensure store files are actually approaching the
threshold

•  Runs as asynchronous thread on RegionServer
•  Splits are fast and nearly instant

•  Reference files point to original region files and
represent each half of the split

•  Compactions take care of splitting original files
into new region directories

Auto Sharding

Auto Sharding and Distribution

•  Unit of scalability in HBase is the Region
•  Sorted, contiguous range of rows
•  Spread “randomly” across RegionServer
•  Moved around for load balancing and failover
•  Split automatically or manually to scale with

growing data
•  Capacity is solely a factor of cluster nodes vs.

regions per node

Column Family vs. Column

•  Use only a few column families
•  Causes many files that need to stay open per region

plus class overhead per family
•  Best used when logical separation between data

and meta columns
•  Sorting per family can be used to convey

application logic or access pattern

Storage Separation

•  Column Families allow for separation of data
•  Used by Columnar Databases for fast analytical

queries, but on column level only
•  Allows different or no compression depending on the

content type
•  Segregate information based on access pattern
•  Data is stored in one or more storage file, called

HFiles

Column Families

SCHEMA DESIGN

Key Cardinality

Key Cardinality

•  The best performance is gained from using row
keys

•  Time range bound reads can skip store files
•  So can Bloom Filters

•  Selecting column families reduces the amount of
data to be scanned

•  Pure value based filtering is a full table scan
•  Filters often are too, but reduce network traffic

Fold, Store, and Shift

Fold, Store, and Shift

•  Logical layout does not match physical one
•  All values are stored with the full coordinates,

including: Row Key, Column Family, Column
Qualifier, and Timestamp

•  Folds columns into “row per column”
•  NULLs are cost free as nothing is stored
•  Versions are multiple “rows” in folded table

Key/Table Design

•  Crucial to gain best performance
•  Why do I need to know? Well, you also need to know

that RDBMS is only working well when columns are
indexed and query plan is OK

•  Absence of secondary indexes forces use of row
key or column name sorting

•  Transfer multiple indexes into one
•  Generate large table -> Good since fits architecture

and spreads across cluster

DDI

•  Stands for Denormalization, Duplication and
Intelligent Keys

•  Needed to overcome shortcomings of
architecture

•  Denormalization -> Replacement for JOINs
•  Duplication -> Design for reads
•  Intelligent Keys -> Implement indexing and

sorting, optimize reads

Pre-materialize Everything

•  Achieve one read per customer request if
possible

•  Otherwise keep at lowest number
•  Reads between 10ms (cache miss) and 1ms

(cache hit)
•  Use MapReduce to compute exacts in batch
•  Store and merge updates live
•  Use incrementColumnValue

Motto: “Design for Reads”

Tall-Narrow vs. Flat-Wide Tables

•  Rows do not split
•  Might end up with one row per region

•  Same storage footprint
•  Put more details into the row key

•  Sometimes dummy column only
•  Make use of partial key scans

•  Tall with Scans, Wide with Gets
•  Atomicity only on row level

•  Example: Large graphs, stored as adjacency
matrix

Example: Mail Inbox

<userId> : <colfam> : <messageId> : <timestamp> : <email-message>

12345 : data : 5fc38314-e290-ae5da5fc375d : 1307097848 : "Hi Lars, ..."

12345 : data : 725aae5f-d72e-f90f3f070419 : 1307099848 : "Welcome, and ..."
12345 : data : cc6775b3-f249-c6dd2b1a7467 : 1307101848 : "To Whom It ..."
12345 : data : dcbee495-6d5e-6ed48124632c : 1307103848 : "Hi, how are ..."

or

12345-5fc38314-e290-ae5da5fc375d : data : : 1307097848 : "Hi Lars, ..."
12345-725aae5f-d72e-f90f3f070419 : data : : 1307099848 : "Welcome, and ..."
12345-cc6775b3-f249-c6dd2b1a7467 : data : : 1307101848 : "To Whom It ..."

12345-dcbee495-6d5e-6ed48124632c : data : : 1307103848 : "Hi, how are ..."

è Same Storage Requirements

Partial Key Scans
Key	 Descrip+on	
<userId> Scan	 over	 all	 messages	

for	 a	 given	 user	 ID	
<userId>-<date> Scan	 over	 all	 messages	

on	 a	 given	 date	 for	 the	
given	 user	 ID	

<userId>-<date>-<messageId> Scan	 over	 all	 parts	 of	 a	
message	 for	 a	 given	 user	
ID	 and	 date	

<userId>-<date>-<messageId>-<attachmentId> Scan	 over	 all	
a8achments	 of	 a	
message	 for	 a	 given	 user	
ID	 and	 date	

Sequential Keys

<timestamp><more key>: {CF: {CQ: {TS : Val}}}

•  Hotspotting on Regions: bad!
•  Instead do one of the following:

•  Salting
•  Prefix <timestamp> with distributed value
•  Binning or bucketing rows across regions

•  Key field swap/promotion
•  Move <more key> before the timestamp (see OpenTSDB

later)
•  Randomization

•  Move <timestamp> out of key

Salting

•  Prefix row keys to gain spread
•  Use well known or numbered prefixes
•  Use modulo to spread across servers
•  Enforce common data stay close to each other for

subsequent scanning or MapReduce processing
0_rowkey1, 1_rowkey2, 2_rowkey3
0_rowkey4, 1_rowkey5, 2_rowkey6

•  Sorted by prefix first
0_rowkey1
0_rowkey4
1_rowkey2
1_rowkey5
…

Hashing vs. Sequential Keys

•  Uses hashes for best spread
•  Use for example MD5 to be able to recreate key

•  Key = MD5(customerID)
•  Counter productive for range scans

•  Use sequential keys for locality
•  Makes use of block caches
•  May tax one server overly, may be avoided by salting

or splitting regions while keeping them small

Key Design

Key Design Summary

•  Based on access pattern, either use sequential or
random keys

•  Often a combination of both is needed
•  Overcome architectural limitations

•  Neither is necessarily bad
•  Use bulk import for sequential keys and reads
•  Random keys are good for random access patterns

Example: Facebook Insights

•  > 20B Events per Day
•  1M Counter Updates per Second

•  100 Nodes Cluster
•  10K OPS per Node

•  ”Like” button triggers AJAX request
•  Event written to log file
•  30mins current for website owner

Web	 ➜	 Scribe	 ➜	 Ptail	 ➜	 Puma	 ➜	 HBase	

HBase Counters

•  Store counters per Domain and per URL
•  Leverage HBase increment (atomic read-modify-

write) feature
•  Each row is one specific Domain or URL
•  The columns are the counters for specific metrics
•  Column families are used to group counters by

time range
•  Set time-to-live on CF level to auto-expire counters by

age to save space, e.g., 2 weeks on “Daily Counters”
family

Key Design
•  Reversed Domains

•  Examples: “com.cloudera.www”, “com.cloudera.blog”
•  Helps keeping pages per site close, as HBase efficiently

scans blocks of sorted keys
•  Domain Row Key =

MD5(Reversed Domain) + Reversed Domain
•  Leading MD5 hash spreads keys randomly across all regions

for load balancing reasons
•  Only hashing the domain groups per site (and per subdomain

if needed)
•  URL Row Key =

MD5(Reversed Domain) + Reversed Domain + URL ID
•  Unique ID per URL already available, make use of it

Insights Schema

Summary

•  Design for Use-Case
•  Read, Write, or Both?

•  Avoid Hotspotting
•  Consider using IDs instead of full text
•  Leverage Column Family to HFile relation
•  Shift details to appropriate position

•  Composite Keys
•  Column Qualifiers

Summary (cont.)

•  Schema design is a combination of
•  Designing the keys (row and column)
•  Segregate data into column families
•  Choose compression and block sizes

•  Similar techniques are needed to scale most
systems

•  Add indexes, partition data, consistent hashing
•  Denormalization, Duplication, and Intelligent

Keys (DDI)

CLUSTER SIZING

Competing Resources

•  Reads and Writes compete for the same low-
level resources
•  Disk (HDFS) and Network I/O
•  RPC Handlers and Threads

•  Otherwise the do exercise completely separate
code paths

Memory Sharing

•  By default every region server is dividing its
memory (i.e. given maximum heap) into
•  40% for in-memory stores (write ops)
•  20% for block caching (reads ops)
•  remaining space (here 40%) go towards usual Java

heap usage (objects etc.)
•  Share of memory needs to be tweaked

Reads

•  Locate and route request to appropriate region
server
•  Client caches information for faster lookups ➜

consider prefetching option for fast warmups
•  Eliminate store files if possible using time

ranges or Bloom filter
•  Try block cache, if block is missing then load

from disk

Block Cache

• Use exported metrics to see effectiveness of
block cache

•  Check fill and eviction rate, as well as hit
ratios ➜ random reads are not ideal

•  Tweak up or down as needed, but watch
overall heap usage

• You absolutely need the block cache

•  Set to 10% at least for short term benefits

Writes

•  The cluster size is often determined by the write
performance

•  Log structured merge trees like
•  Store mutation in in-memory store and write-

ahead log
•  Flush out aggregated, sorted maps at specified

threshold - or - when under pressure
•  Discard logs with no pending edits

•  Perform regular compactions of store files

Write Performance

•  There are many factors to the overall write
performance of a cluster
•  Key Distribution ➜ Avoid region hotspot
•  Handlers ➜ Do not pile up too early
•  Write-ahead log ➜ Bottleneck #1
•  Compactions ➜ Badly tuned can cause ever

increasing background noise

Write-Ahead Log

•  Currently only one per region server
•  Shared across all stores (i.e. column families)
•  Synchronized on file append calls

•  Work being done on mitigating this
•  WAL Compression
•  Multiple WAL’s per region server ➜ Start more than

one region server per node?

Write-Ahead Log (cont.)

•  Size set to 95% of default block size
•  64MB or 128MB, but check config!

•  Keep number low to reduce recovery time
•  Limit set to 32, but can be increased

•  Increase size of logs - and/or - increase the
number of logs before blocking

•  Compute number based on fill distribution and
flush frequencies

Write-Ahead Log (cont.)

• Writes are synchronized across all stores
•  A large cell in one family can stop all writes

of another
•  In this case the RPC handlers go binary, i.e.

either work or all block

• Can be bypassed on writes, but means no
real durability and no replication
•  Maybe use coprocessor to restore

dependent data sets (preWALRestore)

Flushes

•  Every mutation call (put, delete etc.) causes a
check for a flush

•  If threshold is met, flush file to disk and
schedule a compaction
•  Try to compact newly flushed files quickly

•  The compaction returns - if necessary - where
a region should be split

Compaction Storms

•  Premature flushing because of # of logs or
memory pressure
•  Files will be smaller than the configured flush size

•  The background compactions are hard at work
merging small flush files into the existing,
larger store files
•  Rewrite hundreds of MB over and over

Dependencies

•  Flushes happen across all stores/column
families, even if just one triggers it

•  The flush size is compared to the size of
all stores combined
•  Many column families dilute the size
•  Example: 55MB + 5MB + 4MB

Some Numbers

•  Typical write performance of HDFS is
35-50MB/s

Cell Size	
 OPS	

0.5MB	
 70-100 	

100KB	
 350-500	

10KB	
 3500-5000 ??	

1KB	
 35000-50000 ????	

This	 is	 way	 to	 high	 in	 pracAce	 -‐	 ContenAon!	

Some More Numbers

•  Under real world conditions the rate is
less, more like 15MB/s or less
•  Thread contention is cause for massive slow

down

Cell Size	
 OPS	

0.5MB	
 10	

100KB	
 100	

10KB	
 800	

1KB	
 6000	

Notes

•  Compute memstore sizes based on number of
regions x flush size

•  Compute number of logs to keep based on fill
and flush rate

•  Ultimately the capacity is driven by
•  Java Heap
•  Region Count and Size
•  Key Distribution

Cheat Sheet #1

•  Ensure you have enough or large enough
write-ahead logs

•  Ensure you do not oversubscribe available
memstore space

•  Ensure to set flush size large enough but not
too large

•  Check write-ahead log usage carefully

Cheat Sheet #2

•  Enable compression to store more data per
node

•  Tweak compaction algorithm to peg
background I/O at some level

•  Consider putting uneven column families in
separate tables

•  Check metrics carefully for block cache,
memstore, and all queues

Example

•  Java Xmx heap at 10GB
•  Memstore share at 40% (default)

•  10GB Heap x 0.4 = 4GB

•  Desired flush size at 128MB
•  4GB / 128MB = 32 regions max!

•  For WAL size of 128MB x 0.95%

•  4GB / (128MB x 0.95) = ~33 partially uncommitted logs to
keep around

•  Region size at 20GB

•  20GB x 32 regions = 640GB raw storage used

Ques+ons?	

