
Policing the RFC:
How to not kill your website at scale

Graham Leggett
Apachecon EU 2012

Tuesday 06 November 12

99%

0%0%

200 304 None

Caching is Good
Tuesday 06 November 12

Start with an aside, caching is good.

In a rough non-scientific test, we compared highly cacheable elements to their non cacheable
parent page, and found that in this particular instance 99.4% of the traffic was never seen by
the servers at all.

0.3% of the traffic consisted of cheap 304 Not Modified responses.

0.3% of the traffic consisted of 200 OK.

You want to cache your traffic as much as you can.

You want to support conditional requests - in this example, traffic was half.

100%

200 304 None

No Caching is Bad
Tuesday 06 November 12

Risks of a sudden loss of caching:

- Flatten your infrastructure
- Get a massive bill

http://tools.ietf.org/html/rfc1122#section-1.2.2

 1.2.2 Robustness Principle

 At every layer of the protocols, there is
 a general rule whose application can lead
 to enormous benefits in robustness and
 interoperability [IP:1]:

 "Be liberal in what you accept, and
 conservative in what you send"

Tuesday 06 November 12

RFC1122 says “Be liberal in what you accept, and conservative in what you send”.

It means that servers are strict, and clients are forgiving.

We do our testing with clients.

Problem.

Tuesday 06 November 12

Concrete example.

One of these pictures is RFC compliant.

One of these pictures will kill your site.

Autumn 2

Tuesday 06 November 12

Autumn 2 has:

- Proper Etags, revalidation results in cheap 304 Not Modified
- A well defined long expiry
- Has content length, a cache can decide up front whether to cache
- Has a valid content type, filters will be correctly applied

Autumn 1

Tuesday 06 November 12

Autumn 1 has:

- No ETag or Last-Modified, revalidation impossible
- No cache / cache bypass
- Vary on the User-Agent, a cache DoS
- Content-Length is missing, some caches won’t cache this
- Content-Type is blank, filters are bypassed

What can we do?

Tuesday 06 November 12

mod_policy
Tuesday 06 November 12

How do we enforce protocol compliance?

mod_policy has been designed to enforce a specified protocol policy.

It provides a set of output filters, which are slotted into place as needed.

We can log the violation, or we can reject the request outright with a 500 error.

While mod_security protects us from clients, mod_policy protects us from servers.

Content Type Policy
Tuesday 06 November 12

The most basic check, do we have a content type at all, is the content type the content type
we were expecting?

Content Length Policy
Tuesday 06 November 12

Some caches want advance notice of the object size before the cache will attempt caching.

We can enforce the presence of a content length.

Validation Policy
Tuesday 06 November 12

Is an ETag or Last-Modified present?

Is the ETag well formed? Does the ETag have quotes around it? Is a weak ETag correctly
specified? (W/””)

Conditional Request Policy

Tuesday 06 November 12

Does the server honor conditional requests like it should?

If not, we can reject the request.

Cache Maxage Policy
Tuesday 06 November 12

Here we zoom into the Freshness Lifetime of the response. Does the freshness lifetime fall
below the acceptable minimum length of time?

A short freshness lifetime can amplify an outage.

For example, a freshness lifetime of 1 hour will cause all cached data to expire within an
hour, and all caching will be gone after that point during a failure.

People may be tempted to place short freshness lifetimes on URLs in an effort to allow “take
down” of content. In this case, simply abandon the URL.

First prize: cache forever.

No Cache Policy
Tuesday 06 November 12

Here we detect whether the server has completely banned caching altogether.

We accept the client sending no-cache, but we ban the server from responding no-cache.

This protects against thundering herds and bill shock.

Vary Policy
Tuesday 06 November 12

The Vary header tells proxies along the way which headers have been used to decide on the
variant of the response being returned.

Vary on a header that has millions of possible values, and you could fill your cache with the
same page, cached millions of times.

Example: User-Agent. In a rough test, after recording User-Agent strings for about 5 days,
approximately 1 million unique User-Agent string combinations were recorded.

If an URL varies on User-Agent, it cause cause the cache to clog up with copies of the page,
and become ineffective.

Keepalive / Version Policy
Tuesday 06 November 12

HTTP/1.0 requests that arrive can cause havoc with keepalive, potentially disabling keepalive
when this is not intended.

This can cause problems with sockets in the CLOSE_WAIT and TIME_WAIT states.

As the exception to the rule, this filter can be used to ban HTTP/1.0 requests, insisting that
clients use HTTP/1.1 as a minimum, where keepalive defaults to enabled.

With the addition of the Keepalive Policy, if keepalive is not present at all, the request can be
rejected.

mod_cache

Tuesday 06 November 12

What caching edge cases might we find?

How can a developer dig deeper to determine what problems exist?

The CacheHeader and CacheDetailHeader directives give precise reasons for a caching
decision.

Cache Hit

Tuesday 06 November 12

In the standard cache case, we have a cache HIT reported.

Cache Miss

Tuesday 06 November 12

In a further standard cache case, we have a typical cache MISS.

Cache Edge Case

Tuesday 06 November 12

Here we have an edge case.

A previously cached entity is being revalidated, but the 304 Not Modified response is itself
uncacheable, telling us the entity is no longer cacheable. The cache responds by honouring
the response and removing the cached entry.

The next hit might cause the entity to be cached again, and the next attempt at revalidation
will cause the entity to be removed again, and so on.

The symptom: the site runs slower during caching. The cache is blamed, but in reality the
service behind it is not 100% compliant.

• Caching is good

• Sudden denial-of-caching is expensive

• You need to enforce RFC compliance

• mod_cache + mod_policy can help

Tuesday 06 November 12

• http://httpd.apache.org/docs/trunk/
compliance.html

• http://people.apache.org/~minfrin/bbc-
donated/mod_policy/

• http://httpd.apache.org/docs/2.4/mod/
mod_cache.html#cachedetailheader

Tuesday 06 November 12

http://people.apache.org/~minfrin/bbc-donated/mod_policy/
http://people.apache.org/~minfrin/bbc-donated/mod_policy/

