

Kerberos and Single Sign-On
with HTTP

Joe Orton
Red Hat

Overview

• Introduction
• The Problem
• Current Solutions
• Future Solutions
• Conclusion

Introduction

• WebDAV: common complaint of poor
support for authentication in HTTP

• Basic: not good enough
• Digest: not widely available

– Cannot integrate with other authentication
systems

• Kerberos:
– Large deployments for Unix shops
– Active Directory

The Problem

• How to integrate HTTP servers into a
Kerberos infrastructure?

• Single Sign-On: reducing the number of
times people enter passwords

• Ideal: user authentication happens exactly
once per “session”

Problem Scope

• Covering intranet-, enterprise- organisation-
wide HTTP authentication

• Out of scope: SSO for “The Web”
• In scope? Authentication to HTTP proxy

servers
– Useful for organisations where Web

access must pass through an HTTP proxy
– Strong authentication needed for policy

enforcement

Authentication Sessions

• “Session” defined from initial user
authentication

• Sessions should be universal to achieve the
goal of “Single Sign-On”

• User should never have to authenticate:
– to any individual server
– to use any particular service (protocol)

• How to terminate a session?

One-Slide-Guide to Kerberos

• Shared secret keys, a trusted third-party
(KDC), and symmetric key encryption
– KDC = Key Distribution Centre; trusted by

all
• KDC authenticates user, gives out “TGT”
• Using TGT, client obtains “ticket” from KDC

encrypted with service's secret key
• Client can prove user identity to a service
• Mutual authentication: service authenticated

to client

What makes HTTP different?

• Traditional Internet protocols (e.g. SMTP,
IMAP, ...) all support Kerberos
authentication forever

• Why is HTTP different?

• Strong authentication is not much use
without message integrity, and probably also
confidentiality

• Integrity/confidentiality = transport layer
• HTTP authentication is independent of the

transport layer; unlike SMTP, IMAP, ...
• Many approaches to improving HTTP

authentication don't understand this

Authentication and Security

Current Solutions

• Stanford WebAuth: forms and cookies
– Similar solution: Pubcookie

• Using HTTP “Basic” authentication with
Kerberos

• HTTP “Negotiate” authentication

Stanford WebAuth

• Based on forms and cookies
• Token-passing via browser

redirects between web
server and “WebKDC”

• Kerberos credentials
passed to WebKDC
via HTML form

• WebKDC authenticates
as user to KDC

WebAuth protocol

User Agent

User Agent

Web Server

GET /private

302 Redirect
Location:
 http://webkdc.example.com/...

http://webkdc.example.com/

WebAuth protocol 2

User Agent

User Agent

WebKDC

GET /authenticate-me

200 OK

<html>...<form>...

WebAuth protocol 3

User Agent

User Agent

WebKDC

POST /authenticate-me

302 Redirect
Location:
 http://origin.example.com/...
Set-Cookie: blah

WebKDC KDC

WebAuth analysis

• “Application level” solution
• Cookies + HTML != HTTP authentication
• Requires a complete web browser

– Doesn't work with automated agents,
WebDAV

• Credentials over the wire at HTTP level
– Kerberos designed to avoid doing this
– No mutual authenication
– Requires SSL to be secure

WebAuth analysis 2

• Training users to enter Kerberos credentials
into web forms is Very Bad™ - phishing

• Session scope: within one web browser but
then covers all servers

• Cannot authenticate to HTTP proxies
• Session termination? Flush cookies

Kerberos via Basic Auth

• Use standard HTTP Basic authentication
• Client sends Kerberos credentials as normal

Basic auth credentials
• Web server authenticates as user directly to

KDC
– Custom server code needed
– e.g. mod_auth_kerb

GET /secret/ HTTP/1.1
HTTP/1.1 401 Unauthorized
WWW-Authenticate: Basic realm=”Blah”

GET /secret/ HTTP/1.1
Authorization: Basic QWxuIHNlc2FZQ==
HTTP/1.1 200 OK

Kerberos via Basic on the wire

Kerberos via Basic, analysis

• Simple to set up
• Works with any HTTP client

– Including automated clients, WebDAV
• Again, sending credentials over the wire

defeats the point of using Kerberos
– Requires SSL to secure credentials
– No mutual authentication

• Can authenticate to proxies, but insecurely –
cleartext only to proxy

Kerberos via Basic, analysis 2

• Session scope: one web browser, one
server

• Training users to enter credentials into
HTTP authentication dialogs is also Very
Bad™ (maybe only Quite Bad™, but still not
Good™)

• Session termination: flush cached
credentials within browser

The “Negotiate” Scheme

• New HTTP authentication scheme (kind of)
• Written by Microsoft; I-D published 2001
• Became “Informational” RFC 4559 in 2006
• Uses GSSAPI token exchange, wraps

Kerberos protocol over the wire
• Custom server, client extension

Negotiate: Protocol trace

1. GET /secret/ HTTP/1.1
2. HTTP/1.1 401 Unauthorized
 WWW-Authenticate: Negotiate [token]

3. GET /secret/ HTTP/1.1
 Authorization: Negotiate Y.....Q==
 [goto 2, or...]
 HTTP/1.1 200 OK

Implementing Negotiate

• Supported at HTTP protocol level; works
with WebDAV etc.

• Implemented by Firefox, MSIE
– ...also Curl, elinks, neon (hence, e.g.

Subversion)
• No Kerberos credentials on the wire!

– ...requires SSL to secure the conne` ction
• Works with proxies

– ...but not securely

Negotiate analysis – the bad

• Even the name is bad
• Per-connection authentication!

– ...assumes all subsequent requests on
given TCP connection are authenticated

• Arbitrarily breaks RFC2617 grammar
– “WWW-Authenticate: Negotiate b64blob”,
– Should be ... “Negotiate token=b64blob”

• Abuses RFC2617 headers
– “WWW-Authenticate” in a 2xx response

Negotiate analysis – the good

• Real Single Sign-On!
• “Kerberized” HTTP

– No credentials over the wire
– Mutual authentication

• Session scoped to all servers, all services
• Session termination dictated by system-wide

Kerberos login session

mod_auth_kerb

• Module for Apache httpd 1.3/2.x
• Maintained by Daniel Kouril, BSDy license
• Version 5.0 released August 2006, first non-

beta release
– Latest is v5.3, November 2006

• Supports both Negotiate and Kerberos-over-
Basic authentication

mod_auth_kerb Configuration

• Obtain a service key from the KDC
• Name, for example:
HTTP/www.example.com@EXAMPLE.COM

• Service key in keytab file – check
permissions!

• Load module and add access control
configuration, either httpd.conf or .htaccess

Access control Configuration
<Location /private>

 AuthType Kerberos

 AuthName "Kerberos Login"

 KrbMethodNegotiate On

 KrbMethodK5Passwd Off

 KrbAuthRealms EXAMPLE.COM

 Krb5KeyTab /etc/httpd/conf/keytab

 require valid-user

 SSLRequireSSL

</Location>

Client configuration

• Firefox:

• MSIE should work automatically within the
“Intranet zone”

Conclusion

• Strong authentication as an HTTP
authentication scheme alone is not enough

• “Negotiate” is a practical if flawed solution
for Kerberos Single Sign-On with HTTP

• But must be used over SSL

Future Solutions

• Redesign Negotiate, without the warts?
• RFC2712: TLS with Kerberos ciphersuites

– Implemented in OpenSSL; no deployment
– Not GSSAPI-based = Bad

• draft-santesson-tls-gssapi: TLS with
GSSAPI authentication exchange
– GSSAPI = Good, but breaks TLS state

machine?
• A “GSSAPI Transport Layer” for HTTP?

Resources

• http://webauth.stanford.edu/
• http://www.pubcookie.org/
• http://modauthkerb.sourceforge.net/
• http://www.ietf.org/rfc/rfc4559.txt
• http://www.ietf.org/rfc/rfc2712.txt
• These slides:

http://people.apache.org/~jorton/ac08eu/

http://webauth.stanford.edu/
http://www.pubcookie.org/
http://modauthkerb.sourceforge.net/
http://www.ietf.org/rfc/rfc4559.txt
http://www.ietf.org/rfc/rfc2712.txt
http://people.apache.org/~jorton/ac08eu/

Q&A

• Any questions?

