
Break My Site
practical stress testing and tuning

photo credit: Môsieur J

a talk for ApacheCon Europe 2008 by Jeremy Quinn

1

This is designed as a beginner’s talk.
I am the beginner.

I will present two case studies:
1) measuring an expensive scheduled process, using custom code
2) measuring a complex web page built by Apache Cocoon, using Apache JMeter

http://www.flickr.com/people/jblndl/
http://www.flickr.com/people/jblndl/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

measuring a process
• analyse the code

• break it down into the important steps

• write code to measure the steps

• capture and plot the base-line data

• look for the most fruitful optimisations

• apply them and re-run one-by-one

2

The first case study is a complicated automated import process that runs every few hours on
1000’s of assets

designing the tests is a bit recursive
you need to start by getting a baseline measurement, for comparison
look for places where optimisations will have the greatest effect
work out how to simulate the optimisations
also work out how long a real implementation would take to write
apply the simulation to the code
re-run the tests

test results

20%

27%

19%

29%

5%

Timing Test 1

read
folder checks
transformations
put.default.preview
put.default.www

0

1250

2500

3750

5000

Test 1 Test 2 Test 3 Test 4

Timings

• Test 1: the original state
• Test 2: write optimisation
• Test 3: + folder optimisation
• Test 4: + indexer optimisation

3

ran a series of four tests
[CLICK] after the first test we got a breakdown of timings for each step averaged over 600
runs
we looked for the low hanging fruit
[CLICK] we used the first run to design the subsequent tests
[CLICK] now we can compare the accumulation of optimisations
it was a recursive process that we could complete quickly because we only simulated the
changes, but because we had an idea how long each optimisation would take to really
implement, we could decide which optimisations were cost-effective
Get the addendum to this talk, to see the code used to capture and transform the log files
into something useful

measuring a website

• over-load the site to breaking point

• get a baseline measurement

• analyse the generation process

• seek optimisations

• compare the optimisations

4

The second case-study was a representational sample of a very big news website, developed
using Apache Cocoon.
The page aggregated 20 collections of links to categorised documents, each requiring a query
to a back-end document repo.

1 10 20 30 40 50 60 70 80 90 100

Memory & Thread Optimisation

test results

Approximately 600 hits per data-point
All graphs at the same scale

accumulated optimisations
 -–— what’s possible

Simultaneous Users

0

50

100

150

200

250

300

350

400

1 10 20 30 40 50 60 70 80 90 100

Baseline Measurement

Page Load (seconds)
Throughput (pages/min)
Stability %

1 10 20 30 40 50 60 70 80 90 100

Read Optimisation

1 10 20 30 40 50 60 70 80 90 100

List Optimisation
200

150

100

50

0

Average
seconds
per page

Throughput
pages per

minute

5

•We started off with a baseline measurement (shows why the site was stalling)
[CLICK] the server gets into trouble
[CLICK] totally non-linear relationship between users and speed
the logs showed we needed memory and thread optimisation
after several iterations of tuning we got this [CLICK] then [CLICK] then [CLICK]
• Shows that through a series of optimisations, a vast improvement can be made.
•You may be able to see how useless one person clicking in a browser is at testing.
•Disregard the absolute speed values, this was done on my laptop.
•The original server configuration being taken to only 30 users, with disastrous effect.
•Throughput drops to single figures, page load time climbs sky high, stability reduces by
nearly half.
•From the logs I could see there were not enough threads or memory to cope.

purpose
what do I hope to achieve?

photo credit: Brian Uhreen

6

Load testing can be used to solve different sorts of problems.
If it’s a website, you don’t want it broken by popularity.
Find out how much traffic will make a site break,
so you can plan to cope.

http://www.flickr.com/people/snype451/
http://www.flickr.com/people/snype451/

comparing changes

• code optimisations

• different implementations

• caching strategies

• different datasources

• different architectures

7

Load testing can be used during development to compare different sorts of changes.

tests

• speed of pages

• content of pages

• behaviour of webapps

8

JMeter can test the speed of webpage loads with different amounts of users
It also has tools for crawling and testing content within web pages.
It can also send parameters as POST requests etc. to help you test webapps.
This is useful to test if optimisations break a working site

gauge your server

• get a specification

• how many of what power of machine?

• choosing and tuning a load-balancer

9

Before you start to work out what servers you need, you have to know what level of traffic it is
intended to cope with.
This has to come from either the implementation you are replacing or from marketing.
Test the machines you plan to use, so you know what capacity they can handle.
Round-Robins with machines of different capacities may work really badly.

planning
what am I going to do?

photo credit: Paul Goyette

10

meaningful results are not guaranteed
through good planning you will hopefully get results from your tests that are useful to you

http://www.flickr.com/people/pgoyette/
http://www.flickr.com/people/pgoyette/

what can I change?
• implementations

• server configuration

• memory

• threads

• pools

• system architecture

11

Form a clear picture of what you will try to change
And what effect you expect to see

what will happen?

• build a mental model

• predict what you expect to happen

• learn to read the data

• test your ideas against reality

12

As your tests run, relate events in the server logs to how the graphs look

order of change
• only make one change at a time

• only make one change at a time

• only make one change at a time

• only make one change at a time

• in the most meaningful order

• which depends on your purpose

13

If you make more than one change at a time
you don’t know which change had what effect
which makes it more difficult to build a mental model of what is happening

I tested optimisations before playing with threads and memory
For each change, I ran the tests again

what tools?
on MacOSX I used :

• JMeter

• Terminal

• Console

• Activity Monitor

• Grab

14

[CLICK] I found it was fine to run JMeter on the server for running low level tests. [CLICK]
It is better to run JMeter on another machine though.
For very high throughput testing, you can aggregate results from many JMeter clients.
[CLICK] I can watch Cocoon in its Terminal window. [CLICK]
[CLICK] I used the Console to filter and watch Jetty’s logs. [CLICK]
[CLICK] In Activity Monitor I can track threads, memory and cpu usage.
[CLICK] Grab to capture screenshots.

setup
what do I do to get ready?

photo credit: Fabio Venni

15

 Good preparation is everything
In diving I was taught : plan the dive, then dive the plan
this applies to good testing as well

http://www.flickr.com/people/fabiovenni/
http://www.flickr.com/people/fabiovenni/

make a test

keep it simple stupid

16

 unless you can make your tests completely reproducible, you are wasting your time

start JMeter

17

start a plan

18

threads

19

request

20

recording

21

record enough detail about what you are changing for each comparative test, so that you
can :
a) know which test you performed
b) can reproduce it accurately

check everything

• content of datafeeds

• behaviour of pipelines / urls

• outcome of transformations

22

Check every stage,
so you know everything is working properly
and set up as you expected,
before you start testing.
Otherwise you might not be testing what you think you are.

caching

• repository?

• datasource?

• pipeline?

23

Make sure you know the state of all the caching,
so it matches what you want to test.

warm-up

• hit your test page(s) with a browser

• last chance for a visual check

• get your server up to speed

24

Warm-up your server.
Hit the pages you want to test in a browser to make sure they work.

be local

• clients & server on the same subnet

• avoid possible network issues

25

Be on the server's local subnet.

enough clients?

• creating many threads

• creates its own overhead

26

Have enough clients
to perform the level of testing you need.

quit processes

• everything that is unnecessary

• periodic processes skew your results

27

record your data

• server logs

• JMeter graphs

• JMeter data file (XML or CSV ?)

• screen grabs of specific events

• test it !!!!!

28

Prepare properly,
to make sure all of your data will be recorded.
Grab relevant sections of logs.
Grab graphs after a run.
Choose what data to write to a file.

running tests
time for a cup of tea?

photo credit: thespeak

29

No, you have lots to do.

http://www.flickr.com/people/thespeak/
http://www.flickr.com/people/thespeak/

run-time data

• clear log windows on each run

• keep it organised

• use a file or folder naming convention

30

Record the real-time data you need.

I clear the log windows for each run
so after the run is finished,
I can easily scroll back looking for exceptions etc.

Use naming conventions for multiple runs.

watch it run

• part of the learning process

• see where the problems happen

• see what you are fixing

• make the link between cause and effect

• take snapshots

31

Watch the tools as the tests run.
Learn to read the graphs.

my screen

32

I can follow errors and timings in Cocoon’s output.
Errors and query times changing for the repo, in Jetty’s logs.
Thread, memory and cpu usage in Activity Monitor.

interpreting
the results

what does it all mean?

photo credit: woneffe

33

http://www.flickr.com/people/woneffe/
http://www.flickr.com/people/woneffe/

reading the graph

• load speed

• throughput

• deviation

• hits

34

[CLICK] Page load speeds in milliseconds.
[CLICK] Throughput in pages per second.
[CLICK] The deviation (variability) of the load speed in milliseconds
[CLICK] The black dots are individual times
[CLICK] Sometimes JMeter draws data off the graph
[CLICK] Unless you are testing on real hardware, these speeds have no meaning in isolation
but are useful for comparison

chaotic start

• test for long enough

• JMeter ramps threads

• JVMs warm up

• Servlet adds threads

35

Your tests need to run for long enough for you to get meaningful results.
I ran a minimum of 600 hits, per test

shi‘appen

36

[CLICK] Learn to relate problems on the server to its effect on the graph.

You may see the effects of:
[CLICK] exceptions [CLICK]
[CLICK] garbage collection [CLICK]

good signs

• speed flattening

• throughput flattening

• deviation dropping

• no exceptions ;)

37

When the values on the graph begin to flatten out,
it shows that the system has become stable at that load.

• authorise

• fill in data

• upload files

• wrap tests in logic

• etc. etc.

more tests

38

I used the simplest possible configuration in JMeter.
I was only hitting one url.
It does a lot more.

• JDBC

• LDAP

• FTP

• AJP

• JMS

• POP, IMAP

• etc. etc.

more protocols

39

You can apply tests to many different parts of your infrastructure.

• design to cope

• test early, test often

• plan well

• pay attention

• capture everything

• maintain a model

conclusions

40

