a talk for ApacheCon Europe 2008 by Jeremy Quinn

Break My Site

practical stress testing and tuning

o' >
Ak ! o £
h
e (Lale™
< ' . —— 5 i 4
3 N /
y ~
B \

. » y R - ’ 2 A A TN 4 a
| X ’ 2 e . " A Nt dd ,/ _ > &~ p ‘ LB Ve
photo credit: Mésieur J

> - "»".‘)\ ’ e - ‘
SOME RIGHTS RESERVED @
1

This is designed as a beginner’s talk.
| am the beginner.

| will present two case studies:
1) measuring an expensive scheduled process, using custom code
2) measuring a complex web page built by Apache Cocoon, using Apache JMeter

http://www.flickr.com/people/jblndl/
http://www.flickr.com/people/jblndl/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

measuring a process

e analyse the code

e break it down into the important steps
e write code to measure the steps

e capture and plot the base-line data

e look for the most fruitful optimisations

e apply them and re-run one-by-one

2

The first case study is a complicated automated import process that runs every few hours on
1000’s of assets

designing the tests is a bit recursive

you need to start by getting a baseline measurement, for comparison
look for places where optimisations will have the greatest effect
work out how to simulate the optimisations

also work out how long a real implementation would take to write
apply the simulation to the code

re-run the tests

test results

Timing Test e Test 1: the original state

e Test 2: write optimisation

* Test 3: + folder optimisation

* Test 4: + indexer optimisation

Timings

5000

3750

2500

read

folder checks
transformations
put.default.preview
put.default.www

1250

Test 1 Test 2 Test 3 Test 4

ran a series of four tests

[CLICK] after the first test we got a breakdown of timings for each step averaged over 600
runs

we looked for the low hanging fruit

[CLICK] we used the first run to design the subsequent tests

[CLICK] now we can compare the accumulation of optimisations

it was a recursive process that we could complete quickly because we only simulated the
changes, but because we had an idea how long each optimisation would take to really
implement, we could decide which optimisations were cost-effective

Get the addendum to this talk, to see the code used to capture and transform the log files
into something useful

measuring a website

e over-load the site to breaking point
* get a baseline measurement

e analyse the generation process

e seek optimisations

e compare the optimisations

4
The second case-study was a representational sample of a very big news website, developed
using Apache Cocoon.
The page aggregated 20 collections of links to categorised documents, each requiring a query
to a back-end document repo.

test results

Baseline Measurement
400

accumulated optimisations
-—-— what's possible

350

| - Page Load (seconds)

| - Throughput (pages/min)
| Stability %

| | Approximately 600 hits per data-point
|

I
l
550 1l i.) ‘; 1Ca All graphs at the same scale
' Memory & Thread Optimisation Read Optimisation List Optimisation
200 200

: hAn==snypuls

1 10 20 30 40 50 60 70 80 90100 1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90100 1 10 20 30 40 50 60 70 80 90 100

Simultaneous Users

300

150

100

eWe started off with a baseline measurement (shows why the site was stalling)

[CLICK] the server gets into trouble

[CLICK] totally non-linear relationship between users and speed

the logs showed we needed memory and thread optimisation

after several iterations of tuning we got this [CLICK] then [CLICK] then [CLICK]

e Shows that through a series of optimisations, a vast improvement can be made.
eYou may be able to see how useless one person clicking in a browser is at testing.
eDisregard the absolute speed values, this was done on my laptop.

eThe original server configuration being taken to only 30 users, with disastrous effect.
eThroughput drops to single figures, page load time climbs sky high, stability reduces by
nearly half.

eFrom the logs | could see there were not enough threads or memory to cope.

iD 0 MOT SHUT OFF

puUrpose

what do | hope to achieve?

photo credit: Brian Uhreen s

Load testing can be used to solve different sorts of problems.
If it’s a website, you don’t want it broken by popularity.

Find out how much traffic will make a site break,

SO you can plan to cope.

http://www.flickr.com/people/snype451/
http://www.flickr.com/people/snype451/

comparing changes

* code optimisations

e different implementations
e caching strategies

o different datasources

e different architectures

Load testing can be used during development to compare different sorts of changes.

e speed of pages

e content of pages

e behaviour of webapps

JMeter can test the speed of webpage loads with different amounts of users
It also has tools for crawling and testing content within web pages.

It can also send parameters as POST requests etc. to help you test webapps.
This is useful to test if optimisations break a working site

gauge your server

e get a specification
 how many of what power of machine?

e choosing and tuning a load-balancer

9

Before you start to work out what servers you need, you have to know what level of traffic it is

intended to cope with.
This has to come from either the implementation you are replacing or from marketing.
Test the machines you plan to use, so you know what capacity they can handle.

Round-Robins with machines of different capacities may work really badly.

planning

what am | going to do?

photo credit: Paul Goyette

meaningful results are not guaranteed
through good planning you will hopefully get results from your tests that are useful to you

10

http://www.flickr.com/people/pgoyette/
http://www.flickr.com/people/pgoyette/

what can | change?

* implementations

* server configuration
* memory
e threads
* pools

e system architecture

Form a clear picture of what you will try to change
And what effect you expect to see

11

what will happen?

e build a mental model
e predict what you expect to happen
e Jearn to read the data

e test your ideas against reality

As your tests run, relate events in the server logs to how the graphs look

12

order of change

e only make one change at a time
e only make one change at a time
e only make one change at a time
e only make one change at a time
e in the most meaningful order

e which depends on your purpose

If you make more than one change at a time
you don’t know which change had what effect
which makes it more difficult to build a mental model of what is happening

| tested optimisations before playing with threads and memory
For each change, | ran the tests again

13

what tools?

on MacOSX I used :
o |Meter
e Terminal
e Console

e Activity Monitor

e Grab

Graph Results

Name: |Graph Results

comments: N/ =0 users, 40 threads on Repo, 35 threads on Cocoon, default Memory

Write All Data to a File

Fitename | reports/ @ 30u 40r 35c amjmx| | Browse.. | []Log Ermors Only | Configure

534273 ms

0 ms

Graphs to Display ¥ Data [v] Average

¥]Median [v] Deviation [Throughput

«

No of Samples 649
179781

Deviation

Latest Sample 313664
Throughput 4.758/minute

4 jetty-2007_09_18.log

QFilter

Filter
OUT OF THREADS: SocketListener9.9.9.9:1099

LOV ON THREADS ((46-39:3)<5) on SocketListenerdd.s
LOV ON THREADS ((48-36+8)<5) on SocketListenerdd.o.

OUT OF THREADS: SocketListenerd.s.9.0:10008

OUT OF THREADS: SocketListener9.9.9.9:1099

OUT OF THREADS: SocketListenerd.9.9.0:10000

OUT OF THREADS: SocketListener9.9.9.9:1099

OUT OF THREADS: SocketListenerdd.0.0.0:10008

OUT OF THREADS: istenere?.0.0.0:10000

OUT OF THREADS: SocketListenerdd.

OUT OF THREADS: SocketListenerdd

LOV ON THREADS ((48-48+4)<5 6000
LOV ON THREADS ((46-48+44)<5) on SocketListenerdd 6000
LOV ON THREADS ((48-46+4)<5) on SocketListenerdd 6000

LOV ON THREADS ((46-46+44)<5) on SocketListenerdd
LOV ON THREADS ((48-48+44)<5) on SocketListener@d.e
LOV ON THREADS ((48-4844)<5) on SocketListenerdd.e.
LO¥ ON THREADS ((48-48+44)<5) on SocketListener@®.e
LOV ON THREADS ((48-4844)<5) on SocketListenerdd.e.
LO¥ ON THREADS ((48-4844)<5) on SocketListener@®.e
LOV ON THREADS ((48-4844)<5) on SocketListenerdd.o.
LOV ON THREADS ((48-4844)<5) on SocketListener@®.e
LOV ON THREADS ((48-4844)<5) on SocketListenerdd.e.
LO¥ ON THREADS ((48-4844)<5) on SocketListener@d.e.
LOV ON THREADS ((48-4844)<5) on SocketListenerdd.o.
LO¥ ON THREADS ((48-¢

Average 352762
Median 343295

[-XSX5)
at org.sortbay .
:tt org.mortbay.

- Shared /Di heckouts (NID — java — 120x24
http.SocketL istener .handleConnection(Unknown Source)
util.ThreodedServer .handle (Unknown Source)

1.ThreadPoo$Pool Thread . run(Unknown Source;

LT . ’

Exception ing tesplate [unknown location]
Intarprot(] Java:69)
4 (T .java:40)
.java:122)
noF MMLPipel gPipe!
ng handle-errors at -f

* Processed by Apache Cocoon 2.1.9 in 7.125883 minutes.
* Processed by Apache Cocoon 2.1.9 in 7.21675 minutes.

Processed by Apache Cocoon 2.1.9 in 7.178633 minutes.
Processed by Apache Cocoon 2.1.9 in 7.3364 minutes.

* Processed by Apache Cocoon 2.1.9 in 5.8465166 minutes.
* Processed by Apache Cocoon 2.1.9 in 5.8251333 minutes.
* Processed by Apache Cocoon 2.1.9 in 5.8331666 minutes.

* Processed by Apache Cocoon 2.1.9 in 7.1838335 minutes.

866 Activity Monitor
. o Q- java All Processes. @
Quit Process Inspect Filter Show
“Process ID ¥ Process Name User %CPU_ #Threads Real Memory Virtual Memory
6319 java quinn 105.80 49
6305 Java quinn 24

————————{CPU System Memory _ Disk Activity _ Disk Usage _ Network

CPU Usage

% User:

% System:
% Nice:

% Idle:

55.00 Threads: 335

1350 Processes: 85

050

31.00

(]

.

[CLICK] I found it was fine to run JMeter on the server for running low level tests. [CLICK
It is better to run JMeter on another machine though.
For very high throughput testing, you can aggregate results from many JMeter clients.
| can watch Cocoon in its Terminal window. [CLICK]

| used the Console to filter and watch Jetty’s logs. [CLICK]
In Activity Monitor | can track threads, memory and cpu usage.

[CLICK]
[CLICK]
[CLICK]

[CLICK]

Grab to capture screenshots.

14

what do | do to get ready?

photo credit: Fabio Venni

Good preparation is everything
In diving | was taught : plan the dive, then dive the plan
this applies to good testing as well

15

http://www.flickr.com/people/fabiovenni/
http://www.flickr.com/people/fabiovenni/

keep it simple stupid

unless you can make your tests completely reproducible, you are wasting your time

start JMeter

® O 6 quinn@Slab: /Users/Shared/Development/Libs/Apache/jakarta-jmeter-2.3RC4 — java

Slab:quinn$ 1 5
total 56

-rw-r--r-- 1 quinn wheel 11K Sep 2 23:24 LICENSE

-rwW-r--r-- 1 quinn wheel 228B Sep 2 23:24 MANIFEST

-rwW-r--pr-- 1 quinn wheel 1K Sep 2 23:24 NOTICE

-rW-r==pr-- 1 quinn wheel 3K Sep 2 23:24 README

drwxr-xr-x 3@ quinn wheel 10208 Sep 13 16:48 bin
drwxr-xr-x 14 quinn wheel 476B Sep 13 16:46 docs
drwxr-xr-x 24 quinn wheel 816B Sep 13 16:46 extras
~PW=P==P=-= 1 quinn wheel 2K Sep 18 16:11 jmeter.log
6:46 lib
6:46 printable_docs

[y

[

drwxr-xr-x 13 guinn
Slab:quinn$./bin/jmeter

17

start a plan

File Edit Run Options Help

0/0 |

" B

Motizie

Q Ef‘ Thread Group

? /‘HTTPRequest
Graph Results
WorkBench

PIGA

: Name: |Noti2ie D
N\ y

Comments:__o

UUser Defined Variables

Name: l Value

Add Delete

|_| Run each Thread Group separately ¢.e. run one group before starting the next)

| | Functional Test Mode

Select functional test mode only if you need
to record to file the data received from the server for each reguest.

Selecting this option impacts performance considerably.

Add directory or jar to classpath Browse... Delete Clear

Librany

18

threads

File Edit Run Options Help

0/0 |

9 & Motizie
?

/ [Thread CGroup

? ;' HTTP Request
Graph Results

| workBench

Thread Group

Name: |Thread Group

Comments:
Action to be taken after a Sampler error

® Continue (Stop Thread © Stop Test
roperties N~
Number of Threads (usersx 30 |
Ramip=bp Petiod Gh.sec sy |10 |

Loop Count: Forever

| | Scheduler

19

File Edit Run Options Help

0/0 |

T
?

i ¢

Motizie

Ef‘ Thread Group

¢ /‘H‘ITPRequest
Graph Results
WorkBench

'wi ervel -
erver Name or IP: [192.168.1.69

HTTP Request

vName: |HTTP Request
Comments:news

S
j -\
e
Protoc tpx | Method: |GET v | Content encoding: | |
Path: |/ QD notizie/) |
hRedirect Automatigally™ | | Follow Redirects Use KeepAlive | | Use multipart/form-data for HTTP POST

Send Parameters With the Request

Name: l Value

| Encode? |Include Eq...|

Add Delete

~Send a File With the Request

Filename:

Browse...

Value for "name” attribute:

MIME Type: |

~Optional Tasks
| | Retrieve All Embedded Resources from HTML Files | | Use as Monitor

| Port Number: |8888
—_

20

recording

File Edit Run Options Help

o/0 [
9 & Motizie
¢ B Thread Group Graph Results
HTTP Request : : (Graph Results
al q | NameGran —
» Graph Results E Comments:/ (D / 20 users, 120 threads on Repo, 100 threads + 1 Gig on Cocoon, direct load |
g Worlench | wite AlDETOa File
|_Filename ‘ONS- 30u 120r 100c 1gig dl.c# H] Log Errors Only | Configure
ms
:] I l ID
5§ No of Samples Latest Sample Average

record enough detail about what you are changing for each comparative test, so that you

can :
a) know which test you performed
b) can reproduce it accurately

check everything

e content of datafeeds

e behaviour of pipelines / urls

e outcome of transformations

Check every stage,

so you know everything is working properly
and set up as you expected,
before you start testing.

Otherwise you might not be testing what you think you are.

22

caching

* repository?
e datasource?

* pipeline?

Make sure you know the state of all the caching,
so it matches what you want to test.

23

e hit your test page(s) with a browser

¢]ast chance for a visual check

e get your server up to speed

Warm-up your server.
Hit the pages you want to test in a browser to make sure they work.

24

be local

¢ clients & server on the same subnet

e avoid possible network issues

Be on the server's local subnet.

25

enough clients?

e creating many threads

e creates its own overhead

Have enough clients
to perform the level of testing you need.

26

quit processes

e everything that is unnecessary

e periodic processes skew your results

record your data

* server logs
e JMeter graphs
e [Meter data file (XML or CSV ?)

* screen grabs of specific events

Prepare properly,

to make sure all of your data will be recorded.
Grab relevant sections of logs.

Grab graphs after a run.

Choose what data to write to a file.

28

running tests

time for a cup of tea?

photo credit: thespeak

e

2 ‘- e
- :
- ‘ ‘) » <
|- s e
-~ . ’ - ! - .
-0 < ."'. . d
F 2
e X
o
s

o~

V‘ .
- > B
- I-f .

No, you have lots to do.

29

http://www.flickr.com/people/thespeak/
http://www.flickr.com/people/thespeak/

run-time data

e clear log windows on each run
e keep it organised

e use a file or folder naming convention

Record the real-time data you need.

| clear the log windows for each run

so after the run is finished,

| can easily scroll back looking for exceptions etc.

Use naming conventions for multiple runs.

30

watch it run

e part of the learning process

e see where the problems happen

* see what you are fixing

e make the link between cause and effect

e take snapshots

Watch the tools as the tests run.
Learn to read the graphs.

31

r

my screen

(@& O O quinn@HalfPint /leprs/Sharpd/Dwolopment/(‘.horkouts/— java 120x24 ; | jetty-2007_09_18.log
[2067/89/18 16:34:19.187] INFO [occess] ' Processed by Apache Cocoon 2.1.9 in 6.732 seconds. =] IR
[2007/89/18 16:34:19.695] INFO [occess] ' Processed by Apache Cocoon 2.1.9 in 7.186 seconds. \%‘ ? Q Filter
[2087/89/18 16:34:19.917] INFO [access] ' Processed by Apache Cocoon 2.1.9 in 6.953 seconds.)
[2687/69/18 16:34:19 '%6] INFO [mcessl ' Processed by Apad\e Cocom 2'1.9 in 6.754 Secmds- IR’el.l.andJUleaLrVkU‘ﬂ LUW U TNiRLAvY TOU=TUFT =) Ul JUCRCLL (SLericreo UF:'.IF!eU' Loogg
[2007/89/18 16:34:20.737] INFO [occess] ' Processed by Apache Cocoon 2.1.9 in 7.38 seconds. D016 3501 EVENT LOW ON THREADS ¢(40-46433<85 on SocketlListenered.0.0.0:10000
[2007/89/18 16:34:20.785] INFO [occess] ' Processed by Apache Cocoon 2.1.9 in 6.662 seconds. e] (« et 5} on JoERELL IS EnEreEL e e
[2087/09/18 16:34:20.796] INFO [access] ' Processed by Apache Cocoon 2.1.9 in 6.797 seconds. "218'359] EVENT LOW ON THREADS ((48-48.3)<5) on ZOCKetL?Stenerea'M'eimm
[2007/89/15 16:34:20.528] INFO [occess] ' Processed by Apache Cocoon 2.1.9 in 6.832 seconds. 14:18.359] EVENT LOW ON THREADS ((40-48.2)<5) on Socketl istenerdd.0.n.0:10088
[2007/09/18 16:34:21.783] INFO [occess] ' Processed by Apache Cocoon 2.1.9 in 4.638 seconds. ’4318'3681 EVENT LIV (61 TRREADS £010-40:20400 o0 ZOCKetLFStener@a'e'a'ofmwa
[2007/89/18 16:34:22.346] INFO [occess] ' Processed by Apache Cocoon 2.1.9 in 4.283 seconds. }4:18.360] EVENT LOW ON THREADS ((48-40+2)<5) on ;ocketL?stener@a.8.0.8.18808
[2007/89/18 16:34:24.818] INFO [occess] ' Processed by Apache Cocoon 2.1.9 in 5.702 seconds. [awisd] ST LON DN IIEEADS £C10-40LnE) 0N SOEKGLL LREHNEA.H.0.05 10
[2067/89/18 16:34:25.444] INFO [occess] ' Processed by Apache Cocoon 2.1.9 in 5.745 seconds. ’f'is'%l] EVENT LOW M THREADS ((48'fa+a)é) o ZOCKEtL?Stener@G'e'a'e'mm
[2067/89/18 16:34:26.371] INFO [occess] ' Processed by Apache Cocoon 2.1.9 in 6.376 seconds. Moy 33;} | oy ON TIREADS ((10-40:4)5) on Sockotlletenardd.0.0.0:10000
[2087/89/18 16:34:26.981] INFO [occess] ' Processed by Apache Cocoon 2.1.9 in 7.852 seconds. }4:15.440] WARN! | OUT OF THREADS: SocketListenerdp.d.n.0:10200
[2067/89/18 16:34:26.989] INFO [occess] ' Processed by Apache Cocoon 2.1.9 in 6.191 seconds. }4:15.448] WARN! | OUT OF THREADS: SocketListenerq®.d.p.d:16900
[2007/09/16 16:3“27-;‘391 1"”3 [access] ' z°°°”°" by Apache °£°°“ ;-1-9 in 2‘363 SecnGs. }4:18.440] WARN! | OUT OF THREADS: SocketListener@d.d.p.d:16900
[2067/89/18 16:34:27.845] INFO [occess] ' Processed by Apache oon 2.1.9 in 6.859 seconds. 4:15.4417 WARN! | OUT OF THREADS: ketListen 9.0.9:
[2087/89/10 16:5¢:27.904] INGHRgIOcEEss] - Processed by Apache Cocoon 2.1.9 n 7.11 seconds, ;4:12.44$} WARN! | SET gF THREAggz gﬁﬁkiﬂsinggg .g.g.g:igggg
[36\07(4.'\09;1\8 16:34:27.932] INFO [occess] ' Processed by Apache Cocoon 2.1.9 in 7.207 seconds. }4:18.4417 WARNI | OUT OF THREADS: Socketlistenerd?.d.p.0:18200
Activity Monitor 006 Y jetty.out o
;) T a) | = — “
. @ Q- java All Processes . = m %A ? Q millis
Quit Process Inspect Filter Show 1 Logs Clear Reload Mark Filter
' UULLIZTILS L 27 meeoes >
- ~ [20087/09/18 16:34:30.191] DEBUG [index-latest] Lucene returned in 8 millis
RN —- B %CPU #Threads Real Memory Virual M&l - con00 015 16:3¢4:30.193) DEBUG [index-latest] Search returned 38 (1882) results out of 145 total
6319 java quinn 122.90 29 121.71 MB 295.7 documents in 10 millis
6305 java quinn 47.70 59 64.66 MB 505.1 [2087/09/15 16:34:30.447] DEBUG [index-latest] Lucene returned in 3 millis
| [2067/09/18 16:34:30.448] DEBUG [index-lotest] Search returned 3@ {1682) results out of 1460 total
documents in 5 wmillis
‘ [2667/65/18 16:34:368.655] DEBUG [index-latest] Lucene returned in 4 millis
[20087/09/18 16:34:30.656] DEBUG [index-latest] Search returned 38 (1882) results ocut of 1460 total
‘ documents in 5 wmillis
[2667/09/10 16:34:30.069] DEBUG [index-latest] Lucene returned in 4 nillis
[2667/09/18 16:34:30.378] DEBUG [index-lotest] Search returned 3@ {1682) results out of 1458 total
‘ documents in 5 wmillis
[2067,/69/16 16:34:31.022] DEBUG [index-latest] Lucene returned in 4 wmillis
~ [20087/89/18 16:34:31.823] DEBUG [index-latest] Search returned 38 (1882) results out of 1458 total
- documents in 5 wmillis
- — - \ [2667/69/18 16:34:31.138] DEBUG [index-latest] Lucene returned in 4 wmillis
CPU System Memory Disk Activity Disk Usage Network o [2067/09/18 16:34:31.139] DEBUG [index-latest] Search returned 3@ (1882) results cut of 1450 total
CPU Usage documents in 5 wmillis
= [2007/89/18 16:34:31.215] DEBUG [index-latest] Lucene returned in 5 wmillis
%User: 77.00 |l] Threads: 349 : [2067/69/18 16:34:31.216] DEBUG [index-latest] Search returned 38 (1882) results out of 1458 total
% System: 12.50 M Processes: 83 documents in 6 millis _ , o
: [2667/69/15 16:34:31.411] DEBUG [index-latest] Lucene returned in 183 millis
% Nice: 0.50 ! [2667/09/18 16:34:31.412) DEBUG [index-latest] Search returned 38 (1882) results out of 1450 total
%Idle: 10.00 ." documents in 184 millis m
’ ’ [2667/659/18 16:34:31.426] DEBUG [index-latest] Lucene returned in 3 millis
[2067/09/18 16:34:31.427] DEBUG [index-latest] Search returned 38 (75) results out of 1468 total -

32
| can follow errors and timings in Cocoon’s output.
Errors and query times changing for the repo, in Jetty’s logs.
Thread, memory and cpu usage in Activity Monitor.

what does it all mean?

photo credit:

woneffe

33

http://www.flickr.com/people/woneffe/
http://www.flickr.com/people/woneffe/

reading the graph

Graphs to Display Data Average Median Deviation Throughput

24673 ms
* load speed
e throughput
e deviation
e hits
0 ms j;<| |, —
No qf Samples 755 #t Sample 1656‘0‘. Aver_age 23437
Deviation 3292 roughputiiss ™46y /minute Median 24415

34

[CLICK] Page load speeds in milliseconds.

[CLICK] Throughput in pages per second.

[CLICK] The deviation (variability) of the load speed in milliseconds

[CLICK] The black dots are individual times

[CLICK] Sometimes JMeter draws data off the graph

[CLICK] Unless you are testing on real hardware, these speeds have no meaning in isolation
but are useful for comparison

chaotic start

e test for long enough
e JMeter ramps threads
e JVMs warm up

e Servlet adds threads

Your tests need to run for long enough for you to get meaningful results.
| ran a minimum of 600 hits, per test

35

shi‘appen

[2687/89/26 13:04:13.643] INFO
[2087/69/26 13:04:18.648] INFO
[2087/89/26 13:04:18.748] INFO
[2687/89/26 13:04:19.433] INFO
[2087/89/26 13:04:20.996] WARN
[2087/89/26 13:04:21.335] INFO
[2087/89/26 13:04:24.266] INFO
[2087/89/26 13:04:24.997] INFO
[2087/89/26 13:04:26.759] INFO

[dccess]

[access]
[access]
[access]

! Processed

tL1stener] LOW ON THREADS ((5i

| h

' Processed by

! Processed
' Processed

‘G * Processed

[2687/89/18 17:31:27.687] INFO
[2687/69/18 17:31:29.716] INFO
[2087/89/16 17:31:47.893] INFO
[2687/89/18 17:31:52.893] INFO
[26687/69/16 17:31:55.815] INFO [access]
[2687/69/18 17:32:89.188] INFO [access]
[2687/89/18 17:32:36.866] ERROR [handled-&

at <mdp serialize type_“ehtml“> - T

[access]
[access]
[access]
[access]

' Processed
' Processed
' Processed
. Processed

by Apache Cocoon 2.1.9 in 3.361 seconds.

.0.0:8538

by Apache Cocoon
by Apache Cocoon
by Apache Cocoon
by Apache Cocoon

by Apache Cocoon
by Apache Cocoon
by Apache Cocoon
by Apache Cocoon
iy Apache Cocoon

Za
2.
2.
2.

1
1.
1.
1

.9 in

9
9
9
9

in

in
in
in

in
in
in
in
in
in

by Apache Cocoon 2.1.9 in 8.167 seconds.
#0)<5) on main@a.n.a.0:3553
Apache Cocoon 2.1.9

8.752 seconds.

18.786 seconds.
13.111 seconds.
13.84 seconds.
15.276 seconds.

12.586 seconds.
14.914 seconds.
31.95 seconds.
37.42 seconds.
48.811 seconds.
53.43 seconds.

sitemap.xmap:25:47

}templdtes.TempldtingException: éxception processing template [unknown location]

at org.apache.cocoon.components.pipeline.AbstractProcessingPipeline.processXMLPipeline{AbstractProcessingPipelin

Caused by:
at .templates.Interpreter.interpret (Interpreter.java:69)
at temp lates.cocoon.Temp latesInterpreter .generate(Temp latesInterpreter.jova:4a)
at .temp lates .cocoon.ReaderGenerator .generate{ReaderGenerator . java:122)
e.java:5783

. 41 more
Caused by: java.lang.O0utOfMemoryError: Java heap space

I

[CLICK] Learn to relate problems on the server to its effect on the graph.

You may see the effects of:

[CLICK] exceptions [CLICK]
[CLICK] garbage collection

[CLICK]

36

good signs

.

/J/r///wv’-c’ r //NJ'J"«#MJ

'."'

’

¢

e speed flattening
e throughput flattening
e deviation dropping

* no exceptions ;)

When the values on the graph begin to flatten out,
it shows that the system has become stable at that load.

37

NIGCRERE

e authorise

e fill in data

e upload files

e wrap tests in logic

o cfc. etc.

| used the simplest possible configuration in JMeter.
| was only hitting one url.
It does a lot more.

38

more protocols

JDBC

e LDAP

e FTP

e AJP

e JMS

e POP, IMAP

® ctc. etc.

You can apply tests to many different parts of your infrastructure.

conclusions

* design to cope

* test early, test often
e plan well

* pay attention

e capture everything

e maintain a model

