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Problem

• How do you scale up applications?
– 100’s of terabytes of data
– Takes 11 days to read on 1 computer

• Need lots of cheap computers
– Fixes speed problem (15 minutes on 1000 computers), but…
– Reliability problems

• In large clusters, computers fail every day
• Cluster size is not fixed

• Need common infrastructure
– Must be efficient and reliable
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Solution

• Apache Project
• Hadoop Core includes:

– Distributed File System - distributes data
– Map/Reduce - distributes application

• Written in Java
• Runs on

– Linux, Mac OS/X, Windows, and Solaris
– Commodity hardware
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Distributed File System

• Designed to store large files
• Stores files as large blocks (eg. 128 MB)
• Each block stored on multiple servers
• Data is automatically re-replicated on

need
• Accessed from command line, Java, or C
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Map/Reduce

• Map/Reduce is a programming model for efficient
distributed computing

• It works like a Unix pipeline:
– cat input | grep |       sort           | uniq -c      |  cat > output

–    Input     | Map  | Shuffle & Sort |   Reduce   | Output

• Efficiency from
– Streaming through data, reducing seeks
– Pipelining

• A good fit for a lot of applications
– Log processing
– Web index building
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Map/Reduce Dataflow
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Map/Reduce features

• Fine grained Map and Reduce tasks
– Improved load balancing
– Faster recovery from failed tasks

• Automatic re-execution on failure
– In a large cluster, some nodes are always slow or flaky
– Framework re-executes failed tasks

• Locality optimizations
– With large data, bandwidth to data is a problem
– Map-Reduce + HDFS is a very effective solution
– Map-Reduce queries HDFS for locations of input data
– Map tasks are scheduled close to the inputs when possible
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Word Count Example

• Mapper
– Input: value: lines of text of input
– Output: key: word, value: 1

• Reducer
– Input: key: word, value: set of counts
– Output: key: word, value: sum

• Launching program
– Defines the job
– Submits job to cluster
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Word Count Dataflow
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Example: Word Count Mapper

 public static class MapClass extends MapReduceBase
    implements Mapper<LongWritable, Text, Text, IntWritable> {

    private final static IntWritable one = new IntWritable(1);

    private Text word = new Text();

    public void map(LongWritable key, Text value,

                    OutputCollector<Text, IntWritable> output,

                    Reporter reporter) throws IOException {
      String line = value.toString();

      StringTokenizer itr = new StringTokenizer(line);
      while (itr.hasMoreTokens()) {

        word.set(itr.nextToken());
        output.collect(word, one);

      }

    }

  }
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Example: Word Count Reducer

  public static class Reduce extends MapReduceBase
    implements Reducer<Text, IntWritable, Text, IntWritable> {

    public void reduce(Text key, Iterator<IntWritable> values,

                       OutputCollector<Text, IntWritable> output,

                       Reporter reporter) throws IOException {

      int sum = 0;

      while (values.hasNext()) {

        sum += values.next().get();

      }

      output.collect(key, new IntWritable(sum));

    }

  }



ApacheCon EU 2008

Configuring a Job

• Jobs are controlled by configuring JobConfs
• JobConfs are maps from attribute names to string value
• The framework defines attributes to control how the job

is executed.
conf.set(“mapred.job.name”, “MyApp”);

• Applications can add arbitrary values to the JobConf
conf.set(“my.string”, “foo”);

conf.setInteger(“my.integer”, 12);

• JobConf is available to all of the tasks
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Putting it all together

• Create a launching program for your application
• The launching program configures:

– The Mapper and Reducer to use
– The output key and value types (input types are

inferred from the InputFormat)
– The locations for your input and output

• The launching program then submits the job
and typically waits for it to complete
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Putting it all together

public class WordCount {
……

public static void main(String[] args) throws IOException {
    JobConf conf = new JobConf(WordCount.class);

    // the keys are words (strings)
    conf.setOutputKeyClass(Text.class);

    // the values are counts (ints)
    conf.setOutputValueClass(IntWritable.class);

    conf.setMapperClass(MapClass.class);

    conf.setReducerClass(Reduce.class);
    conf.setInputPath(new Path(args[0]);

    conf.setOutputPath(new Path(args[1]);

    JobClient.runJob(conf);
…..
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Input and Output Formats

• A Map/Reduce may specify how it’s input is to be read
by specifying an InputFormat to be used

• A Map/Reduce may specify how it’s output is to be
written by specifying an OutputFormat to be used

• These default to TextInputFormat and
TextOutputFormat, which process line-based text data

• Another common choice is SequenceFileInputFormat
and SequenceFileOutputFormat for binary data

• These are file-based, but they are not required to be
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Non-Java Interfaces

• Streaming
• Pipes (C++)
• Pig
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Streaming

• What about non-programmers?
– Can define Mapper and Reducer using Unix text filters
– Typically use grep, sed, python, or perl scripts

• Format for input and output is: key \t value \n
• Allows for easy debugging and experimentation
• Slower than Java programs

bin/hadoop jar hadoop-streaming.jar -input in-dir -output out-dir

  -mapper streamingMapper.sh -reducer streamingReducer.sh

• Mapper: sed -e 's| |\n|g' | grep .

• Reducer: uniq -c | awk '{print $2 "\t" $1}'
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Pipes (C++)

• C++ API and library to link application with
• C++ application is launched as a sub-process of the Java task
• Keys and values are std::string with binary data
• Word count map looks like:

class WordCountMap: public HadoopPipes::Mapper {

public:

  WordCountMap(HadoopPipes::TaskContext& context){}

  void map(HadoopPipes::MapContext& context) {

    std::vector<std::string> words =

      HadoopUtils::splitString(context.getInputValue(), " ");

    for(unsigned int i=0; i < words.size(); ++i) {

      context.emit(words[i], "1");

    }}};
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Pipes (C++)

• The reducer looks like:
class WordCountReduce: public HadoopPipes::Reducer {

public:

  WordCountReduce(HadoopPipes::TaskContext& context){}

  void reduce(HadoopPipes::ReduceContext& context) {

    int sum = 0;

    while (context.nextValue()) {

      sum += HadoopUtils::toInt(context.getInputValue());

    }

    context.emit(context.getInputKey(),
HadoopUtils::toString(sum));

  }

};
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Pipes (C++)

• And define a main function to invoke the tasks:
int main(int argc, char *argv[]) {

  return HadoopPipes::runTask(

     HadoopPipes::TemplateFactory<WordCountMap,

                                                                   WordCountReduce, void,

                                                                   WordCountReduce>());

}
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Pig

• Scripting language that generates Map/Reduce jobs
• User uses higher level operations

– Group by
– Foreach

• Word Count:
input = LOAD ’in-dir' USING TextLoader();

words = FOREACH input GENERATE
FLATTEN(TOKENIZE(*));

grouped = GROUP words BY $0;

counts = FOREACH grouped GENERATE group,
COUNT(words);

STORE counts INTO ‘out-dir’;
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How many Maps and Reduces

• Maps
– Usually as many as the number of HDFS blocks being

processed, this is the default
– Else the number of maps can be specified as a hint
– The number of maps can also be controlled by specifying the

minimum split size
– The actual sizes of the map inputs are computed by:

• max(min(block_size, data/#maps), min_split_size)

• Reduces
– Unless the amount of data being processed is small

• 0.95*num_nodes*mapred.tasktracker.tasks.maximum
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Performance Example

• Bob wants to count lines in text files totaling several
terabytes

• He uses
– Identity Mapper (input: text, output: same text)
– A single Reducer that counts the lines and outputs the total

• What is he doing wrong ?
• This happened, really !

– I am not kidding !



ApacheCon EU 2008

Some handy tools

• Partitioners
• Combiners
• Compression
• Counters
• Speculation
• Zero reduces
• Distributed File Cache
• Tool
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Partitioners

• Partitioners are application code that define how keys
are assigned to reduces

• Default partitioning spreads keys evenly, but randomly
– Uses key.hashCode() % num_reduces

• Custom partitioning is often required, for example, to
produce a total order in the output
– Should implement Partitioner interface
– Set by calling conf.setPartitionerClass(MyPart.class)

– To get a total order, sample the map output keys and pick
values to divide the keys into roughly equal buckets and use
that in your partitioner
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Combiners

• When maps produce many repeated keys
– It is often useful to do a local aggregation following the map
– Done by specifying a Combiner
– Goal is to decrease size of the transient data
– Combiners have the same interface as Reduces, and often are

the same class.
– Combiners must not have side effects, because they run an

indeterminate number of times.
– In WordCount, conf.setCombinerClass(Reduce.class);
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Compression

• Compressing the outputs and intermediate data will often yield
huge performance gains
– Can be specified via a configuration file or set programatically
– Set mapred.output.compress to true to compress job output
– Set mapred.compress.map.output to true to compress map outputs

• Compression Types (mapred(.map)?.output.compression.type)
– “block” - Group of keys and values are compressed together
– “record” - Each value is compressed individually
– Block compression is almost always best

• Compression Codecs (mapred(.map)?.output.compression.codec)
– Default (zlib) - slower, but more compression
– LZO - faster, but less compression
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Counters

• Often Map/Reduce applications have countable events
• For example, framework counts records in to and out of

Mapper and Reducer
• To define user counters:

static enum Counter {EVENT1, EVENT2};

reporter.incrCounter(Counter.EVENT1, 1);

• Define nice names in a MyClass_Counter.properties file
CounterGroupName=My Counters

EVENT1.name=Event 1

EVENT2.name=Event 2
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Speculative execution

• The framework can run multiple instances of slow tasks
– Output from instance that finishes first is used
– Controlled by the configuration variable

mapred.speculative.execution
– Can dramatically bring in long tails on jobs
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Zero Reduces

• Frequently, we only need to run a filter on the input
data
– No sorting or shuffling required by the job
– Set the number of reduces to 0
– Output from maps will go directly to OutputFormat and disk
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Distributed File Cache

• Sometimes need read-only copies of data on the local
computer.
– Downloading 1GB of data for each Mapper is expensive

• Define list of files you need to download in JobConf
• Files are downloaded once per a computer
• Add to launching program:

DistributedCache.addCacheFile(new URI(“hdfs://nn:8020/foo”), conf);

• Add to task:
Path[] files = DistributedCache.getLocalCacheFiles(conf);
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Tool

• Handle “standard” Hadoop command line options:
– -conf file - load a configuration file named file
– -D prop=value - define a single configuration property prop

• Class looks like:
public class MyApp extends Configured implements Tool {

  public static void main(String[] args) throws Exception {

     System.exit(ToolRunner.run(new Configuration(),

                         new MyApp(), args));

  }

  public int run(String[] args) throws Exception {

     …. getConf() …

  }

}
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Debugging & Diagnosis

• Run job with the Local Runner
– Set mapred.job.tracker to “local”
– Runs application in a single process and thread

• Run job on a small data set on a 1 node cluster
– Can be done on your local dev box

• Set keep.failed.task.files to true
– This will keep files from failed tasks that can be used for

debugging
– Use the IsolationRunner to run just the failed task

• Java Debugging hints
– Send a kill -QUIT to the Java process to get the call stack,

locks held, deadlocks
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Jobtracker front page
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Job counters



ApacheCon EU 2008

Task status
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Drilling down



ApacheCon EU 2008

Performance

• Is your input splittable?
– Gzipped files are NOT splittable

• Are partitioners uniform?
• Buffering sizes (especially io.sort.mb)
• Do you need to Reduce?
• Only use singleton reduces for very small data

– Use Partitioners and cat to get a total order

• Memory usage
– Please do not load all of your inputs into memory!
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Hadoop clusters

• We have ~10,000 machines running Hadoop
• Our largest cluster is currently 2000 nodes
• 1 petabyte of user data (compressed, unreplicated)
• We run roughly 10,000 research jobs / week
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Who Uses Hadoop?

• Amazon/A9
• Facebook
• Google
• IBM
• Joost
• Last.fm
• New York Times
• PowerSet
• Veoh
• Yahoo!
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Q&A

• For more information:
– Website: http://hadoop.apache.org/core
– Mailing lists:

• core-dev@hadoop.apache
• core-user@hadoop.apache

– IRC: #hadoop on irc.freenode.org


