
Programming with
Hadoop’s Map/Reduce

Owen O’Malley
Yahoo!

owen@yahoo-inc.com
ApacheCon EU 2008

ApacheCon EU 2008

Problem

• How do you scale up applications?
– 100’s of terabytes of data
– Takes 11 days to read on 1 computer

• Need lots of cheap computers
– Fixes speed problem (15 minutes on 1000 computers), but…
– Reliability problems

• In large clusters, computers fail every day
• Cluster size is not fixed

• Need common infrastructure
– Must be efficient and reliable

ApacheCon EU 2008

Solution

• Apache Project
• Hadoop Core includes:

– Distributed File System - distributes data
– Map/Reduce - distributes application

• Written in Java
• Runs on

– Linux, Mac OS/X, Windows, and Solaris
– Commodity hardware

ApacheCon EU 2008

Distributed File System

• Designed to store large files
• Stores files as large blocks (eg. 128 MB)
• Each block stored on multiple servers
• Data is automatically re-replicated on

need
• Accessed from command line, Java, or C

ApacheCon EU 2008

Map/Reduce

• Map/Reduce is a programming model for efficient
distributed computing

• It works like a Unix pipeline:
– cat input | grep | sort | uniq -c | cat > output

– Input | Map | Shuffle & Sort | Reduce | Output

• Efficiency from
– Streaming through data, reducing seeks
– Pipelining

• A good fit for a lot of applications
– Log processing
– Web index building

ApacheCon EU 2008

Map/Reduce Dataflow

ApacheCon EU 2008

Map/Reduce features

• Fine grained Map and Reduce tasks
– Improved load balancing
– Faster recovery from failed tasks

• Automatic re-execution on failure
– In a large cluster, some nodes are always slow or flaky
– Framework re-executes failed tasks

• Locality optimizations
– With large data, bandwidth to data is a problem
– Map-Reduce + HDFS is a very effective solution
– Map-Reduce queries HDFS for locations of input data
– Map tasks are scheduled close to the inputs when possible

ApacheCon EU 2008

Word Count Example

• Mapper
– Input: value: lines of text of input
– Output: key: word, value: 1

• Reducer
– Input: key: word, value: set of counts
– Output: key: word, value: sum

• Launching program
– Defines the job
– Submits job to cluster

ApacheCon EU 2008

Word Count Dataflow

ApacheCon EU 2008

Example: Word Count Mapper

 public static class MapClass extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, IntWritable> {

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

 public void map(LongWritable key, Text value,

 OutputCollector<Text, IntWritable> output,

 Reporter reporter) throws IOException {
 String line = value.toString();

 StringTokenizer itr = new StringTokenizer(line);
 while (itr.hasMoreTokens()) {

 word.set(itr.nextToken());
 output.collect(word, one);

 }

 }

 }

ApacheCon EU 2008

Example: Word Count Reducer

 public static class Reduce extends MapReduceBase
 implements Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key, Iterator<IntWritable> values,

 OutputCollector<Text, IntWritable> output,

 Reporter reporter) throws IOException {

 int sum = 0;

 while (values.hasNext()) {

 sum += values.next().get();

 }

 output.collect(key, new IntWritable(sum));

 }

 }

ApacheCon EU 2008

Configuring a Job

• Jobs are controlled by configuring JobConfs
• JobConfs are maps from attribute names to string value
• The framework defines attributes to control how the job

is executed.
conf.set(“mapred.job.name”, “MyApp”);

• Applications can add arbitrary values to the JobConf
conf.set(“my.string”, “foo”);

conf.setInteger(“my.integer”, 12);

• JobConf is available to all of the tasks

ApacheCon EU 2008

Putting it all together

• Create a launching program for your application
• The launching program configures:

– The Mapper and Reducer to use
– The output key and value types (input types are

inferred from the InputFormat)
– The locations for your input and output

• The launching program then submits the job
and typically waits for it to complete

ApacheCon EU 2008

Putting it all together

public class WordCount {
……

public static void main(String[] args) throws IOException {
 JobConf conf = new JobConf(WordCount.class);

 // the keys are words (strings)
 conf.setOutputKeyClass(Text.class);

 // the values are counts (ints)
 conf.setOutputValueClass(IntWritable.class);

 conf.setMapperClass(MapClass.class);

 conf.setReducerClass(Reduce.class);
 conf.setInputPath(new Path(args[0]);

 conf.setOutputPath(new Path(args[1]);

 JobClient.runJob(conf);
…..

ApacheCon EU 2008

Input and Output Formats

• A Map/Reduce may specify how it’s input is to be read
by specifying an InputFormat to be used

• A Map/Reduce may specify how it’s output is to be
written by specifying an OutputFormat to be used

• These default to TextInputFormat and
TextOutputFormat, which process line-based text data

• Another common choice is SequenceFileInputFormat
and SequenceFileOutputFormat for binary data

• These are file-based, but they are not required to be

ApacheCon EU 2008

Non-Java Interfaces

• Streaming
• Pipes (C++)
• Pig

ApacheCon EU 2008

Streaming

• What about non-programmers?
– Can define Mapper and Reducer using Unix text filters
– Typically use grep, sed, python, or perl scripts

• Format for input and output is: key \t value \n
• Allows for easy debugging and experimentation
• Slower than Java programs

bin/hadoop jar hadoop-streaming.jar -input in-dir -output out-dir

 -mapper streamingMapper.sh -reducer streamingReducer.sh

• Mapper: sed -e 's| |\n|g' | grep .

• Reducer: uniq -c | awk '{print $2 "\t" $1}'

ApacheCon EU 2008

Pipes (C++)

• C++ API and library to link application with
• C++ application is launched as a sub-process of the Java task
• Keys and values are std::string with binary data
• Word count map looks like:

class WordCountMap: public HadoopPipes::Mapper {

public:

 WordCountMap(HadoopPipes::TaskContext& context){}

 void map(HadoopPipes::MapContext& context) {

 std::vector<std::string> words =

 HadoopUtils::splitString(context.getInputValue(), " ");

 for(unsigned int i=0; i < words.size(); ++i) {

 context.emit(words[i], "1");

 }}};

ApacheCon EU 2008

Pipes (C++)

• The reducer looks like:
class WordCountReduce: public HadoopPipes::Reducer {

public:

 WordCountReduce(HadoopPipes::TaskContext& context){}

 void reduce(HadoopPipes::ReduceContext& context) {

 int sum = 0;

 while (context.nextValue()) {

 sum += HadoopUtils::toInt(context.getInputValue());

 }

 context.emit(context.getInputKey(),
HadoopUtils::toString(sum));

 }

};

ApacheCon EU 2008

Pipes (C++)

• And define a main function to invoke the tasks:
int main(int argc, char *argv[]) {

 return HadoopPipes::runTask(

 HadoopPipes::TemplateFactory<WordCountMap,

 WordCountReduce, void,

 WordCountReduce>());

}

ApacheCon EU 2008

Pig

• Scripting language that generates Map/Reduce jobs
• User uses higher level operations

– Group by
– Foreach

• Word Count:
input = LOAD ’in-dir' USING TextLoader();

words = FOREACH input GENERATE
FLATTEN(TOKENIZE(*));

grouped = GROUP words BY $0;

counts = FOREACH grouped GENERATE group,
COUNT(words);

STORE counts INTO ‘out-dir’;

ApacheCon EU 2008

How many Maps and Reduces

• Maps
– Usually as many as the number of HDFS blocks being

processed, this is the default
– Else the number of maps can be specified as a hint
– The number of maps can also be controlled by specifying the

minimum split size
– The actual sizes of the map inputs are computed by:

• max(min(block_size, data/#maps), min_split_size)

• Reduces
– Unless the amount of data being processed is small

• 0.95*num_nodes*mapred.tasktracker.tasks.maximum

ApacheCon EU 2008

Performance Example

• Bob wants to count lines in text files totaling several
terabytes

• He uses
– Identity Mapper (input: text, output: same text)
– A single Reducer that counts the lines and outputs the total

• What is he doing wrong ?
• This happened, really !

– I am not kidding !

ApacheCon EU 2008

Some handy tools

• Partitioners
• Combiners
• Compression
• Counters
• Speculation
• Zero reduces
• Distributed File Cache
• Tool

ApacheCon EU 2008

Partitioners

• Partitioners are application code that define how keys
are assigned to reduces

• Default partitioning spreads keys evenly, but randomly
– Uses key.hashCode() % num_reduces

• Custom partitioning is often required, for example, to
produce a total order in the output
– Should implement Partitioner interface
– Set by calling conf.setPartitionerClass(MyPart.class)

– To get a total order, sample the map output keys and pick
values to divide the keys into roughly equal buckets and use
that in your partitioner

ApacheCon EU 2008

Combiners

• When maps produce many repeated keys
– It is often useful to do a local aggregation following the map
– Done by specifying a Combiner
– Goal is to decrease size of the transient data
– Combiners have the same interface as Reduces, and often are

the same class.
– Combiners must not have side effects, because they run an

indeterminate number of times.
– In WordCount, conf.setCombinerClass(Reduce.class);

ApacheCon EU 2008

Compression

• Compressing the outputs and intermediate data will often yield
huge performance gains
– Can be specified via a configuration file or set programatically
– Set mapred.output.compress to true to compress job output
– Set mapred.compress.map.output to true to compress map outputs

• Compression Types (mapred(.map)?.output.compression.type)
– “block” - Group of keys and values are compressed together
– “record” - Each value is compressed individually
– Block compression is almost always best

• Compression Codecs (mapred(.map)?.output.compression.codec)
– Default (zlib) - slower, but more compression
– LZO - faster, but less compression

ApacheCon EU 2008

Counters

• Often Map/Reduce applications have countable events
• For example, framework counts records in to and out of

Mapper and Reducer
• To define user counters:

static enum Counter {EVENT1, EVENT2};

reporter.incrCounter(Counter.EVENT1, 1);

• Define nice names in a MyClass_Counter.properties file
CounterGroupName=My Counters

EVENT1.name=Event 1

EVENT2.name=Event 2

ApacheCon EU 2008

Speculative execution

• The framework can run multiple instances of slow tasks
– Output from instance that finishes first is used
– Controlled by the configuration variable

mapred.speculative.execution
– Can dramatically bring in long tails on jobs

ApacheCon EU 2008

Zero Reduces

• Frequently, we only need to run a filter on the input
data
– No sorting or shuffling required by the job
– Set the number of reduces to 0
– Output from maps will go directly to OutputFormat and disk

ApacheCon EU 2008

Distributed File Cache

• Sometimes need read-only copies of data on the local
computer.
– Downloading 1GB of data for each Mapper is expensive

• Define list of files you need to download in JobConf
• Files are downloaded once per a computer
• Add to launching program:

DistributedCache.addCacheFile(new URI(“hdfs://nn:8020/foo”), conf);

• Add to task:
Path[] files = DistributedCache.getLocalCacheFiles(conf);

ApacheCon EU 2008

Tool

• Handle “standard” Hadoop command line options:
– -conf file - load a configuration file named file
– -D prop=value - define a single configuration property prop

• Class looks like:
public class MyApp extends Configured implements Tool {

 public static void main(String[] args) throws Exception {

 System.exit(ToolRunner.run(new Configuration(),

 new MyApp(), args));

 }

 public int run(String[] args) throws Exception {

 …. getConf() …

 }

}

ApacheCon EU 2008

Debugging & Diagnosis

• Run job with the Local Runner
– Set mapred.job.tracker to “local”
– Runs application in a single process and thread

• Run job on a small data set on a 1 node cluster
– Can be done on your local dev box

• Set keep.failed.task.files to true
– This will keep files from failed tasks that can be used for

debugging
– Use the IsolationRunner to run just the failed task

• Java Debugging hints
– Send a kill -QUIT to the Java process to get the call stack,

locks held, deadlocks

ApacheCon EU 2008

Jobtracker front page

ApacheCon EU 2008

Job counters

ApacheCon EU 2008

Task status

ApacheCon EU 2008

Drilling down

ApacheCon EU 2008

Performance

• Is your input splittable?
– Gzipped files are NOT splittable

• Are partitioners uniform?
• Buffering sizes (especially io.sort.mb)
• Do you need to Reduce?
• Only use singleton reduces for very small data

– Use Partitioners and cat to get a total order

• Memory usage
– Please do not load all of your inputs into memory!

ApacheCon EU 2008

Hadoop clusters

• We have ~10,000 machines running Hadoop
• Our largest cluster is currently 2000 nodes
• 1 petabyte of user data (compressed, unreplicated)
• We run roughly 10,000 research jobs / week

ApacheCon EU 2008

Who Uses Hadoop?

• Amazon/A9
• Facebook
• Google
• IBM
• Joost
• Last.fm
• New York Times
• PowerSet
• Veoh
• Yahoo!

ApacheCon EU 2008

Q&A

• For more information:
– Website: http://hadoop.apache.org/core
– Mailing lists:

• core-dev@hadoop.apache
• core-user@hadoop.apache

– IRC: #hadoop on irc.freenode.org

