
Introduction to Hadoop

Owen O’Malley
Yahoo Inc!

omalley@apache.org



Hadoop: Why?

• Need to process 100TB datasets with multi-
day jobs

• On 1 node:
– scanning @ 50MB/s = 23 days
– MTBF = 3 years

• On 1000 node cluster:
– scanning @ 50MB/s = 33 min
– MTBF = 1 day

• Need framework for distribution
– Efficient, reliable, easy to use



Hadoop: How?

• Commodity Hardware Cluster
• Distributed File System

– Modeled on GFS
• Distributed Processing Framework

– Using Map/Reduce metaphor
• Open Source, Java

– Apache Lucene subproject



Commodity Hardware Cluster

• Typically in 2 level architecture
– Nodes are commodity PCs
– 30-40 nodes/rack
– Uplink from rack is 3-4 gigabit
– Rack-internal is 1 gigabit



Distributed File System
• Single namespace for entire cluster

– Managed by a single namenode.
– Hierarchal directories
– Optimized for streaming reads of large files.

• Files are broken in to large blocks.
– Typically 64 or 128 MB
– Replicated to several datanodes, for reliability
– Clients can find location of blocks

• Client talks to both namenode and datanodes
– Data is not sent through the namenode.



Distributed Processing

• User submits Map/Reduce job
• System:

– Splits job into lots of tasks
– Schedules tasks on nodes close to data
– Monitors tasks
– Kills and restarts if they fail/hang/disappear

• Pluggable file systems for input/output
– Local file system for testing, debugging, etc…



Map/Reduce Metaphor
• Reliable distributed processing of large

datasets
• Abstracts a very common pattern (munge,

regroup, munge)
• Natural for

– Building or updating offline databases (eg. indexes)
– Computing statistics (eg. query log analysis)

• Software framework
– Frozen part: distributed sort, reliability, and re-

execution
– Hot parts: input, map, partition, compare, reduce,

and output



Map/Reduce Metaphor
• Data is a stream of keys and values
• Mapper

– Input: key1,value1 pair
– Output: key2, value2 pairs

• Reducer
– Called once per a key, in sorted order
– Input: key2, stream of value2
– Output: key3, value3 pairs

• Launching Program
– Creates a JobConf to define a job.
– Submits JobConf and waits for completion.



Map/Reduce Dataflow



Map/Reduce Optimizations

• Mapper locality
– Schedule mappers close to the data.

• Combiner
– Mappers may generate duplicate keys
– Side-effect free reducer run on mapper node
– Minimize data size before transfer
– Reducer is still run

• Speculative execution
– Some nodes may be slower
– Run duplicate task on another node



HOWTO: Setting up Cluster

• Modify hadoop-site.xml to set directories
and master hostnames.

• Create a slaves file that lists the worker
machines one per a line.

• Run bin/start-dfs on the namenode.
• Run bin/start-mapred on the jobtracker.



HOWTO: Write Application

• To write a distributed word count program:
– Mapper: Given a line of text, break it into words

and output the word and the count of 1:
• “hi Apache bye Apache” ->
• (“hi”, 1), (“Apache”, 1), (“bye”, 1), (“Apache”, 1)

– Combiner/Reducer: Given a word and a set of
counts, output the word and the sum

• (“Apache”, [1, 1]) -> (“Apache”, 2)

– Launcher: Builds the configuration and submits job



Word Count Mapper
public class WCMap extends MapReduceBase implements Mapper {

  private static final IntWritable ONE = new IntWritable(1);

  public void map(WritableComparable key, Writable value,
                  OutputCollector output,
                  Reporter reporter) throws IOException {
    StringTokenizer itr = new StringTokenizer(value.toString());
    while (itr.hasMoreTokens()) {
      output.collect(new Text(itr.next()), ONE);
    }
  }
}



Word Count Reduce
public class WCReduce extends MapReduceBase implements Reducer {
    
  public void reduce(WritableComparable key, Iterator values,
                     OutputCollector output, 
                     Reporter reporter) throws IOException {
    int sum = 0;
    while (values.hasNext()) {
      sum += ((IntWritable) values.next()).get();
    }
    output.collect(key, new IntWritable(sum));
  }
}



Word Count Launcher
public static void main(String[] args) throws IOException {
  JobConf conf = new JobConf(WordCount.class);
  conf.setJobName("wordcount");
 
  conf.setOutputKeyClass(Text.class);
  conf.setOutputValueClass(IntWritable.class);
    
  conf.setMapperClass(WCMap.class);        
  conf.setCombinerClass(WCReduce.class);
  conf.setReducerClass(WCReduce.class);
    
  conf.setInputPath(new Path(args[0]));
  conf.setOutputPath(new Path(args[1]));
        
  JobClient.runJob(conf);
}



Running on Amazon EC2/S3

• Amazon sells cluster services
– EC2: $0.10/cpu hour
– S3: $0.20/gigabyte month

• Hadoop supports:
– EC2: cluster management scripts included
– S3: file system implementation included

• Tested on 400 node cluster
• Combination used by several startups



Scalability

• Runs on 1000 nodes
• 5TB sort on 500 nodes takes 2.25 hours
• Distributed File System:

– 150 TB
– 3M files



Thank You

• Questions?
• For more information:

– http://lucene.apache.org/hadoop/


