
Navigating WS-(death?)*

Our Starting Point

 Message Oriented

 Transport Agnostic

 SOAP

 If you want to question these points, lets grab a

beer later!

What this talk is not about

Vendor
Stuff

REST

SOAP
& WS

bashing

Goals

 Discover the major specifications associated with

SOAP

 Discover the motivations for these specifications

 Discover how these specifications can be

composed

 Answer:

 When should I use WS-Foo?

 What platforms and toolkits interoperate with WS-

Foo?

 Where is WS-Foo going in the future?

The Major Specifications

 WS Addressing

 WS Policy & Friends

 WS Reliable Messaging & Friends

 WS SX

 WS Security

 WS Secure Conversation

 WS Trust

Some of the “less major” specifications

 WS-AtomicTransactions

 WS-BusinessActivity

 WS-Coordination

 WS-DistributedManagement

 WS-Eventing

 WS-MetadataExchange

 WS-Notification

 WS-Transfer

 Others…

WS-Addressing

WS-Addressing

 SOAP works with any transport

 If there is no URL, how do we address services?

 Example: JMS only has queues and topics

 How do we address multiple services hosted at

the same endpoint?

 How do we tell the endpoint where to send

replies?

 And faults?

 How do we reference a specific message?

Concepts

 Action: the action to be taken by the message

 Message ID: Unique id which makes it possible to

reference the message

 To: A URI which represents the server being

addressed

 ReplyTo: EPR telling the server where to send

replies

 FaultTo: EPR telling the server where to send

faults

Endpoint Reference

 An endpoint reference is the equivalent of URIs

for web services

 Includes:

 Address

 PortType

 ReferenceParameters

 ServiceName

 Only address is required (and typically the only

one used)

Example
<S:Envelope …>
<S:Header>
<wsa:MessageID>http://example.com/6B29FC40-CA47-1067-
B31D-00DD010662DA</wsa:MessageID>
<wsa:ReplyTo>
<wsa:Address>
http://example.com/business/client1

</wsa:Address>
</wsa:ReplyTo>
<wsa:To>

http://example.com/fabrikam/Purchasing
</wsa:To>
<wsa:Action>

http://example.com/fabrikam/SubmitPO
</wsa:Action>

</S:Header>
<S:Body>

...
</S:Body>
</S:Envelope>

WS-Addressing Versions

 2004-08

 First version to pick up real adoption.

 Used in WS-ReliableMessaging 1.0

 2005-08:

 In most major frameworks: XFire, CXF, Axis, WCF

 1.0

 Recently standardized

When should I use it?

 If you’re addressing multiple services on the same

endpoint

 If you’re using non addressable transports

 If you’re using another specification which relies

on it (i.e. WS-RM)

WSDL binding

 WS-Addressing defines a binding to put

addressing information inside the WSDL

 Supported as part of JAX-WS 2.1 and WC

WSDL Binding

<binding …>

<wsaw:UsingAddressing

wsdl:required="true" />

<operation>

…

</operation>

</binding>

WSDL Binding

<portType name=“customerService">

<operation name=“getCustomer">

<input message="tns:getCustomer"

wsaw:Action="http://foo.com/getCustomer"/>

<output message="tns:getCustomerResponse"

wsaw:Action="http://foo.com/getCustomerResponse"/>

</operation>

</portType>

The Matrix

Version Axis 2 CXF Glassfish JBossWS .NET/WS

E 2.0

.NET/WS

E 3.0

XFire WCF

03/04 X

08/04 X X X X X X X

08/05 X X X

05/06 (1.0) X X X X X

WS-ReliableMessaging & Friends

WS-ReliableMessaging

 Not all transports are reliable

 Notably HTTP

 How do we ensure that:

 Each message was received?

 In order?

 And only once?

Main Concepts

 A series of message exchanges between a client

and server is called a sequence

 CreateSequence establishes a sequence

 Each message contains a SequenceId

 Every so often a SequenceAcknowledgement is sent

 TerminateSequence ends the sequence

C
lie

n
t

Se
rv

e
r

Create Sequence

Create Sequence

Response

Message 1

Message 2

Ack 1 & 2

Sequence Creation

<s:Envelope>

<S:Body>

<wsrm:CreateSequence>

<wsrm:AcksTo>

<wsa:Address>

http://Business456.com/serviceA/789

</wsa:Address>

</wsrm:AcksTo>

</wsrm:CreateSequence>

</S:Body>

</S:Envelope>

CreateSequenceResponse

<S:Body>

<wsrm:CreateSequenceResponse>

<wsrm:Identifier>

http://Business456.com/RM/ABC

</wsrm:Identifier>

</wsrm:CreateSequenceResponse>

</S:Body>

Normal Message Exchange
<s:Envelope>

<S:Header>

<wsa:MessageID>…</wsa:MessageID>

<wsa:To>http://example.com/serviceB/123</wsa:To>

<wsa:From>

<wsa:Address>http://Business456.com/serviceA/789</wsa:Address>

</wsa:From>

<wsa:Action>http://example.com/serviceB/123/request</wsa:Action>

<wsrm:Sequence>

<wsrm:Identifier>

http://Business456.com/RM/ABC

</wsrm:Identifier>

<wsrm:MessageNumber>1</wsrm:MessageNumber>

</wsrm:Sequence>

</S:Header>

<S:Body>

<!-- Some Application Data -->

</S:Body>

</S:Envelope>

Message Acknowledgement
<S:Envelope>
<S:Header>
<wsa:MessageID>…</wsa:MessageID>
<wsa:To>http://Business456.com/serviceA/789</wsa:To>
<wsa:From>
<wsa:Address>http://example.com/serviceB/123</wsa:Address>

</wsa:From>
<wsa:Action>
http://docs.oasis-open.org/ws-
rx/wsrm/200608/SequenceAcknowledgement

</wsa:Action>
<wsrm:SequenceAcknowledgement>
<wsrm:Identifier>
http://Business456.com/RM/ABC

</wsrm:Identifier>
<wsrm:AcknowledgementRange Upper="1" Lower="1"/>
<wsrm:AcknowledgementRange Upper="3" Lower="3"/>

</wsrm:SequenceAcknowledgement>
</S:Header>
<S:Body/>
</S:Envelope>

Firewall

Client

One way
message

Server

Firewall issues

 Server has to send an acknowledgement and lost

messages back to the client

 What if there is a firewall?

No response

channel!

Firewall Issues

 SequenceAcknowledgement can be piggybacked

on one way synchronous response

 Even though that’s really against the BasicProfile…

 WS-RM 1.1 introduces a MakeConnection

operation

 Client sends MakeConnection to the server

 Server can respond with any messages it wants to send

Order and delivery assurances

 WS-RM 1.1 removes in order and exactly once

delivery requirements from the spec

 These are really the responsibility of your WS-RM

implementation

 There are no durability assurances from provider

to provider.

WS-RM Roadmap

OASIS

WS-
ReliableMessaging

1.1

WS-RX
Committee

WS-
ReliableMessaging

1.0

WS-
ReliableMessaging

Committee
WS-Reliability 1.0

When should I use WS-RM?

 Need delivery assurances over an unreliable

protocol (HTTP)

 Reliability is not built into the application

The Matrix
Version Axis 2 CXF Glassfish JBossWS .NET/W

SE 2.0

.NET/W

SE 3.0

WCF Systinet

WS-RM

1.0

X X X X X X

WS-RM

1.1 (not

final)

X

WS-Policy

WS-Policy

 If my service uses WS-ReliableMessaging or WS-

Security or MTOM or… how will consumers

know?

 Out of band communication

 Or WS-Policy...

What is WS-Policy

“WS-Policy provides a flexible and extensible

grammar for expressing the capabilities,

requirements, and general characteristics of

entities in an XML Web services-based system.

WS-Policy defines a framework and a model for

the expression of these properties as policies.”

Example

<wsp:Policy

xmlns:sp="http://../securitypolicy"

xmlns:wsp=“http://../policy">

<wsp:ExactlyOne

<sp:Basic256Rsa15 />

<sp:TripleDesRsa15 />

</wsp:ExactlyOne>

</wsp:Policy>

What kind of policies are there?

 WS-ReliableMessaging

 WS-Security (includes HTTP transport related

assertions)

 MTOM

 Addressing (in development)

WS-RM Example

<wsp:Policy wsu:Id=“RmPolicy”>

<rmp:RMAssertion>

<rmp:InactivityTimeout

Milliseconds="600000" />

<rmp:BaseRetransmissionInterval

Milliseconds="3000" />

<rmp:ExponentialBackoff />

<rmp:AcknowledgementInterval

Milliseconds="200" />

</rmp:RMAssertion>

</wsp:Policy>

What frameworks support WS-Policy?

Spec Axis2 CXF Glassfish .NET WSE

3.x

.NET WCF Systinet

1.2 X X X X X X

1.5 X X

MTOM X X

WS-RM X X X

SecurityPolicy X X X X X?

A segue about public key

cryptography

The adventures of Alice, Bob and Eve

Public Key Cryptography

 Encryption and Signing are done with public and

private keys

 Public key is advertised to the world

 Private key is your SECRET

 Asymmetric cryptography

 Slower than symmetric where there is a shared key

Key Creation

Public Key Encryption

Public Key Signature

Shared Secrets

WS-Security

WS-Security

 Includes mechanisms for

 Encrypting messages

 Signing messages

 Setting expiration dates for messages

 Sending authentication tokens

 Builds heavily on the XML Signature and

Encryption publications

Why?

 Sometimes we want message level security

 Intermediaries

 Multiple readers

 Need a standard way to exchange a variety of

security token types

Security tokens

 Defines an abstract way to represent security

tokens:

 UsernameToken

 BinarySecurityToken (X.509, Kerberos)

 Other XML tokens - SAML

 UsernameToken:

 Support both a password digest and clear text

 Clear text should only be used if the transport is

secure and there are no intermediaries

Example: UsernameToken Header

<wsse:Security xmlns:wsse=“…">

<wsse:UsernameToken Id="MyID">

<wsse:Username>Zoe</wsse:Username>

<wsse:Password>pass</wsse:Password>

</wsse:UsernameToken>

</wsse:Security>

Example: BinarySecurityToken Header

<wsse:BinarySecurityToken

ValueType="...#X509v3“

EncodingType="...#Base64Binary“

wsu:Id="X509Token">

MIIEZzCCA9CgAwIBAgIQEmtJZc0rqrKh5i…

</wsse:BinarySecurityToken>

Signature

 Various parts of the SOAP Body can be signed

 The signatures reside in the SOAP Header

 A signature references a message part via a wsu:Id

attribute

Canonicalization

 Before we can sign a document, we must agree on

how that document is represented

 If the xml attributes are in a different order on

either side, the signature value will differ

 We must canonicalize the document to avoid

these problems.

A digital signature part 1
<Envelope>
<Header>
<Signature>…</Signature>
<BinarySecurityToken

ValueType="...#X509v3“
EncodingType="...#Base64Binary“
wsu:Id="X509Token">
MIIEZzCCA9CgAwIBAgIQEmtJZc0rqrKh5i...

</BinarySecurityToken>
</Header>
<Body wsu:Id=“myBody”>
<FooBar>
…

</FooBar>
</Body>

</Envelope>

A digital signature part 2
<ds:Signature>
<ds:SignedInfo>

<ds:CanonicalizationMethod Algorithm=
"http://www.w3.org/2001/10/xml-exc-c14n#"/>

<ds:SignatureMethod Algorithm=
"http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

<ds:Reference URI="#myBody">
<ds:Transforms>

<ds:Transform Algorithm=
"http://www.w3.org/2001/10/xml-exc-c14n#"/>

</ds:Transforms>
<ds:DigestMethod Algorithm=

"http://www.w3.org/2000/09/xmldsig#sha1"/>
<ds:DigestValue>EULddytSo1...</ds:DigestValue>

</ds:Reference>
</ds:SignedInfo>
…

A digital signature part 3

…

<ds:SignatureValue>

BL8jdfToEb1l/vXcMZNNjPOV...

</ds:SignatureValue>

<ds:KeyInfo>

<wsse:SecurityTokenReference>

<wsse:Reference URI="#X509Token"/>

</wsse:SecurityTokenReference>

</ds:KeyInfo>

</ds:Signature>

Encryption

 Uses XML-Encryption standard to encrypt

various parts of the message

 Encrypted data can use a key that is:

1. Exchanged out of band

2. Inside the message (Symmetric)

Encryption
<Envelope>
<Header>
<Signature>
<xenc:ReferenceList>
<xenc:DataReference URI="#bodyID"/>

</xenc:ReferenceList>
</Signature>

</Header>
<Body>
<EncryptedData Id="bodyID">
<ds:KeyInfo>

<ds:KeyName>CN=Hiroshi Maruyama,
C=JP</ds:KeyName>

</ds:KeyInfo>
<xenc:CipherData>
<xenc:CipherValue>...</xenc:CipherValue>

</xenc:CipherData>
</EncryptedData>

</Body>
</Envelope>

Timestamps and Message Expiration

 Need a way to say that a message is only valid up

to a certain time

 Prevents replay attacks to some extent

Timestamp example
<Envelope>
<Header>
<wsse:Security>
<wsu:Timestamp wsu:Id="timestamp">
<wsu:Created>
2001-09- 13T08:42:00Z

</wsu:Created>
<wsu:Expires>
2001-10-13T09:00:00Z

</wsu:Expires>
</wsu:Timestamp>
...

</wsse:Security>
</Header>
…
</Envelope>

Who supports WS-Security

 Better question: who doesn’t?

 Dynamic languages…

Where WS-Security falls short

 It depends on public key cryptography which is

slow

 There is no way to establish trust relationships

 Out of band communication is required unless

you’re trusting all certificates from a specific

authority

WS-Trust

What is it?

 Defines a Security Token Service

 A way to broke trust relationships through the

exchange of security tokens

 Trust must still be bootstrapped out of band.

 Issue, renew, validate, cancel and challenge

security tokens

 The building block of WS-SecureConversation

Problem #1: Token is not understood

 If an endpoint does not understand a particular

token, WS-Trust allows the endpoint to exchange

that token type for another

 Example: Client sends X.509 certificate, server

expects SAML

Exchanging X.509 certificate for SAML

Client sends
X.509 signed

request

Gateway verifies
signature (does
not imply trust)

Gateway sends
X.509 to STS

STS sends back
SAML assertion

Gateway re-signs
message and

sends to server

Server verifies
SAML signature

Example Request

<soap:Body>

<wstrust:RequestSecurityToken>

<wstrust:TokenType>SAML</TokenType>

<wstrust:RequestType>

ReqExchange

</RequestType>

<wstrust:OnBehalfOf>

<ws:BinarySecurityToken

id="originaltoken"

ValueType="X.509>

sdfOIDFKLSoidefsdflk …

</ws:BinarySecurityToken>

</wstrust:OnBehalfOf>

</wstrust:RequestSecurityToken>

</soap:Body>

Example Response

<soap:Body>

<wstrust:RequestSecurityTokenResponse>

<wstrust:TokenType>SAML</TokenType>

<wstrust:RequestedSecurityToken>

<saml:Assertion>

…

</saml:Assertion>

</wstrust:RequestedSecurityToken>

</wstrust:RequestSecurityTokenResponse>

</soap:Body>

Problem #2: Token is untrusted

 If A trusts B and B trusts C, does A trust C?

 WS-Trust server can store and manage trust

relationships for you

Problem #3: How do I issue new tokens?

 What if we don’t want to use asymmetric

cryptography?

 What if we want to create a shared secret for

symmetric cryptography?

 WS-Trust allows issuance of new tokens

WS-SecureConversation

Why?

 Problem:

 WS-Security is inherently slow as it revolves around

public key cryptography. Symmetric cryptography allows

us to speed things up

 No way to reference established security sessions

Security Contexts

 Refers to an established authentication state and

negotiated keys

 A SecurityTokenContext is the on-the-wire

representation of this state

A digital signature with WS-SC

<SecurityTokenContext wsu:Id=“SomeID”>

<Identifier>uuid:…</Identifier>

</SecurityTokenContext>

<ds:Signature>

<ds:SignatureValue>

BL8jdfToEb1l/vXcMZNNjPOV...

</ds:SignatureValue>

<ds:KeyInfo>

<wsse:SecurityTokenReference>

<wsse:Reference URI="#SomeID"/>

</wsse:SecurityTokenReference>

</ds:KeyInfo>

</ds:Signature>

What does this give us

 Using WS-Trust we can issue a new security token

based on a shared secret

 This token can be used to create symmetrically

encrypted messages – which is much faster

 Also allows us to create security sessions

Takeaways

Interoperability

 Java & .NET exhibit strong interoperability for the

major specifications

 Most have been battle tested for a while

Dynamic Languages

 There are no dynamic languages which have open

source WS-* implementations at the moment

 Some movement by the Axis2 community to

provide a C version for PHP, Ruby, etc.

 However – there is no love in general from the

dynamic language community for WS-*

WS-* Thoughts

 I don’t see equivalent security solutions elsewhere

in the “Just HTTP” world

 Might be one of the killer applications of WS-*

 Message Oriented + Transport Neutral leads to

WS-Addresing & WS-RM

 Instead of URIs and Idempotent Operations

 Limited understanding, uneasiness about

interoperability, and concerns about the future of

WS-* is a hindrance to adoption

Questions?

 Blog: http://netzooid.com

 Email: dan@envoisolutions.com

