I Securing Apache on Unix/Linux

Apache security books reviewed at
http://www.apachetutor.org/security/

(and a bunch of FAQS)

http://www.apachetutor.org/security/

I Bugs can be anywhere

* Apache itself
I * Library
 Third-party Module
« Own module
 Scripting Language or Module
« Own or third-party script
» Application server
« Own or third-party application
» Configuration

I Risk factors

house application.

« Complexity. More modules, libs, apps mean
more places for bugs to hide.

» Tradeoffs. PHP gets lots of scrutiny, but
famously puts features and ease-of-use
ahead of security.

I e Scrutiny. On a scale from Apache itself to in-

I Risks to Apache

mod_php, mod_perl, etc have potential to Kill
or compromise Apache.

» Application server transfers the risk to itself.

* A CGl script under mod_cgi can only kill itself

I » Application module, or script running under

» BUT, any of the above can potentially
threaten the host system!

Risk Classification

WASC — Web Application Security Consortium

* Authentication

* Authorization

» Clientside Attacks

« Command Execution
* Information Disclosure
 Logical Attacks

www.webappsec.org

http://www.webappsec.org/

Protection

« Multi-level security

* Programmers and sysops
« Scrutiny

« Containment

» Detection

Your tradeoff

* You need complex custom applications,
homebrew or untrusted scripts, etc.

* You need security.

* How to reconcile the two?

Non-Defences

Little or no effect (in general):
* Firewall

« DMZ

* IDS

« SSL

I Defences

» Sandboxing

* Log analysis

« Operating system limits

» Apache limits

 Active checking of incoming data:

- Perl taint - the pioneer
- mod_security — SecFilter, SecFilterSelective

I * Due diligence

Unix Basics

» Users and Groups

* File ownership, chown

 File permissions, chmod, umask
» Special bits: setuid, setgid

Advanced:

* Filesystem mount flags
 chroot

« SELinux

I Obtaining Apache

(distro).
« Checking the download
- pgp secure
- md5 checksums better than nothing but can be
forged

I * From apache.org mirror or trusted third-party

Apache Installation

» System files usually determined by packager
« Apache User: no privileges, no files, no shell

User apache
apache:x:123:456:web server:/dev/null:/bin/false

Group apache
apache:x:456

Apache Installation

» System files usually determined by packager
« Apache User: no privileges, no files, no shell
« Site Owners: some privileges (normal users)

All webpages, scripts, etc owned by site
owners. Not by apache user or root.

chroot/jalil

A highly-restricted sandbox within a computer.
A jailed program is strictly confined by the O/S.

Both security books have chroot howtos
Terminology: when is chroot the same as jail?

» chroot: a jail available everywhere
* FreeBSD jail: a richer deluxe sandbox

I chroot(2)

with no access to anything outside it.

* Presents a major barrier to escalating
privileges in the event of a successful attack
on Apache.

« Keeps useful tools out of reach of an
attacker.

* Not easy to administer!

I * Runs Apache in a tightly-controlled sandbox

I chroot(3)

- Import everything Apache and applications need
into the jall

- When running “kitchen sink™ apps like PHP, the
jail ends up containing a full toolkit for the benefit
of an intruder

e mod_security or mod_chroot
- Easy setup and startup
- Reduces (but doesn't eliminate) need for useful
tools accessible within the jail
- Restart/graceful fails

I » Classic chroot

Filesystem privileges

Most permissive:
* 644 -rw-r--r-- Files
e 755 -rwxr-xr-x Directories and Scripts

Note: Apache requires access to parent
directories Iin the filesystem, or you'll get 403
(forbidden) errors!

Protecting users
from each other

* 640 -rw-r-----
* /50 -rwxr-x---

Requires Apache user to be made a member
of users groups, subject to local policies.

« Group1 = userl, apache
» Group2 = user2, apache

suexec: allows scripts to be segregated.

Writing to the filesystem

* Inherently Dangerous!

The worst real-life exploits to have affected
Apache servers involve uploading and
executing a malicious script or program.

Good News: We can protect against this, even
If we are running untrusted and possibly-buggy
applications!

Protecting the filesystem

Apache owns nothing!
Where is world-writable?
Where is group-writable by Apache?

/tmp, /var/tmp, /your/writable/path:
* mount with noexec,nosuid flags, so the
operating system prevents upload+exec

$USER/some_path (outside your control)

suexec

Protect users from each other while allowing
scripts

Delegates security to users

Imposes a lot of 'good practice' checks
Potentially circumvents apache security!
Don't forget to read the suexec log!

User Directories and files

Users areas are outside your control. It may
be impossible to enforce filesystem-based
security. selinux offers a more flexible but
more complex alternative.

Fedora: security context (user:role:type)
root_u:system_r:httpd t
allowing access to httpd_sys content t

selinux

From Fedora Wiki:
http://docs.fedoraproject.org/selinux-apache-£c3/

ls -az /var/www/

drwxr-xr—-x root root system_u:object_r:httpd_sys_content_t
drwxr—xr—-x root root system_u:object_r:var_t ..
drwxr—-xr—-x root root system_u:object_r:httpd_sys_script_exec_t
cgi-bin

drwxr-xr—-x root root system_u:object_r:httpd_sys_content_t
error

drwxr—-xr—-x root root system_u:object_r:httpd_sys_content_t html
drwxr-xr—-x root root system_u:object_r:httpd_sys_content_t

icons

Secure Defaults

New contents are inaccessible to the
webserver by default.

Use chcon explicitly to make contents
available

Strict control over server-writable and
executable contents in userspace.
Impose restrictions on scripts, including
suexec.

Web Application Protection

Apache Configuration
ulimit

Perl Taint checking
mod_security

I Configuration

I Limit resources available to Apache and

applications
- Containment of buggy scripts, modules, etc

 Limit the length of request line, HTTP

headers, request body
- DoS protection
- Buffer overflow

Taint checking

Proactively cleanse all input from untrusted
sources.

$untrusted =~ /A(\w+)\.(\W{3})$/
or input_error($untrusted);
my $filename = $1.$2;

More restrictive than necessary, but safe!

Taint checking

* Proactively cleanse all input from untrusted
sources.

» Powerful protection against malicious
attacks.

« Targeted: untrusted input can be used raw in
safe operations.

» A great learning tool for programmers.

* Perl-only.

e Sysop puts faith in programmer.

I mod_security

« Puts sysop in charge of sanitising data
I » Separates taint-like checking from the
application
» Supports all application types
» Extensive logging

« Complex to administrate
» Slow Iif applied to request contents

I mod_security

- Reject bogus HTTP

- Detect common attacks and common bots
— Detect access to trojans/backdoors

— Suppress information leaks in server errors.

» Console (commercial): manage multiple
servers, with reporting and alerts.
« Remo: whitelist-oriented ruleset editor

I « Core Rules (open)

The positive rule from Remo is translated
into a whitelist ModSecurity rule. This means,
that you have to define the good arguments
in Remo. Requests with arguments, that

® POST /action/submit.php

= Headers do not match this positive definition, are
Host: mail.companyx.com considered bad requests (note the exclama-
Referer: .{0,256} tion point in the regex below). They are
User-Agent: .{0,256} dropped by ModSecurity.

= Postparameters
username: [0-9a-zA-7Z]1{4,16}

password: .{0,16} _\
submit: login

REQUEST_HEADERS:Host '~(mail.companyx.com)$ deny
REQUEST _HEADERS:Referer 1~(.{0,256})$ deny
REQUEST_HEADERS:User-Agent !™(.{0,256})$ deny
ARGS:username 1([0-9a-zA-Z]1{4.,16})$ deny
ARGS: password ~(.{0,16})$ deny

ARGS:submit 1”(login)$ deny

I Information Disclosure

 BUT, the converse isn't true: exposing
system information may help an attacker!

 mod_security rulesets — clues on information
that should be filtered.

* mod_security is not a good filter, but output
filter modules such as mod_publisher or
mod_line_edit can strip out sensitive info.

I » Security by Obscurity doesn't work

I Virtual Hosts

(suexec, ruid, fastcgi, MPMs)
» Apache Configuration is normally per-
virtualhost, but may not be.
 Ditto associated configuration such as PHP.
* You cannot load modules per-vhost!

I * Running as different users: limited support

Web Passwords

Basic Authentication — simple, low-security
Digest Authentication — better
Basic + SSL; Custom schemes

htpasswd / htdigest
Database
Directory Services

SSL Client Certificates

Web Passwords

Problem: All forms of Web authentication are
open to brute-force attack due to statelessness

of |

TTP. So there is a lower barrier to entry

than with system passwords.

Consequence: Never use web credentials that
also gain access to the operating system or
other high-value target. Not even when
cryptographically secure!

