
SriSatish Ambati
Performance, Riptano, Cassandra
Azul Systems & OpenJDK
@srisatish

Cache & Concurrency considerations
for a high performance Cassandra

http://www.riptano.com/
http://azulsystems.com/
http://www.google.com/imgres?imgurl=http://www.eweekeurope.co.uk/wp-content/uploads/2010/08/java.jpg&imgrefurl=http://www.eweekeurope.co.uk/comment/google-suit-now-we-know-what-java-means-to-oracle-8991&usg=__6VQGpRxK_vWa4phS2jlzomxtI5E=&h=300&w=300&sz=11&hl=en&start=1&zoom=1&tbnid=4e9FOkYzE0vwrM:&tbnh=116&tbnw=116&prev=/images%3Fq%3Djava%26um%3D1%26hl%3Den%26sa%3DN%26tbs%3Disch:1&um=1&itbs=1

Trail ahead
Elements of Cache Performance

Metrics, Monitors
JVM goes to BigData Land!
Examples
Lucandra, Twissandra
Cassandra Performance with JVM

Commentary
Runtime Views
Non Blocking HashMap
Locking: concurrency
Garbage Collection

A feather in the CAP
• Eventual

Consistency
– Levels
– Doesn’t mean data

loss (journaled)
• SEDA

– Partitioning, Cluster
& Failure detection,
Storage engine mod

– Event driven & non-
blocking io

– Pure Java

Count what is countable, measure what is measurable,
and what is not measurable, make measurable

 -Galileo

Elements of Cache Performance
Metrics

• Operations:
– Ops/s: Puts/sec, Gets/sec, updates/sec
– Latencies, percentiles
– Indexing

• # of nodes – scale, elasticity
• Replication

– Synchronous, Asynchronous (fast writes)
• Tuneable Consistency
• Durability/Persistence
• Size & Number of Objects, Size of Cache
• # of user clients

http://theiowarepublican.com/home/wp-content/uploads/2010/06/geiger_counter.jpg

Elements of Cache Performance:
“Think Locality”

• Hot or Not: The 80/20 rule.
– A small set of objects are very popular!
– What is the most RT tweet?

• Hit or Miss: Hit Ratio
– How effective is your cache?
– LRU, LFU, FIFO.. Expiration

• Long-lived objects lead to better locality.
• Spikes happen

– Cascading events
– Cache Thrash: full table scans

Real World Performance
• Facebook Inbox

– Writes:0.12ms, Reads:15ms @ 50GB data
• Twitter performance

– Twissandra (simulation)
• Cassandra for Search & Portals

– Lucandra, solandra (simulation)
• ycbs/PNUTS benchmarks

– 5ms read/writes @ 5k ops/s (50/50 Update heavy)
– 8ms reads/5ms writes @ 5k ops/s (95/5 read heavy)

• Lab environment
– ~5k writes per sec per node, <5ms latencies
– ~10k reads per sec per node, <5ms latencies

• Performance has improved in newer versions

yahoo cloud store benchmark
50/50 – Update Heavy

yahoo cloud store benchmark
95/5 – read heavy

JVM in BigData Land!
Limits for scale
• Locks : synchronized

– Can’t use all my multi-cores!
– java.util.collections also hold locks
– Use non-blocking collections!

• (de)Serialization is expensive
– Hampers object portability
– Use avro, thrift!

• Object overhead
– average enterprise collection has 3 elements!
– Use byte[], primitives where possible!

• Garbage Collection
– Can’t throw memory at the problem!
– Mitigate, Monitor, Measure foot print

http://obiblog.files.wordpress.com/2008/08/data-pic.jpg
http://www.google.com/imgres?imgurl=http://www.eweekeurope.co.uk/wp-content/uploads/2010/08/java.jpg&imgrefurl=http://www.eweekeurope.co.uk/comment/google-suit-now-we-know-what-java-means-to-oracle-8991&usg=__6VQGpRxK_vWa4phS2jlzomxtI5E=&h=300&w=300&sz=11&hl=en&start=1&zoom=1&tbnid=4e9FOkYzE0vwrM:&tbnh=116&tbnw=116&prev=/images%3Fq%3Djava%26um%3D1%26hl%3Den%26sa%3DN%26tbs%3Disch:1&um=1&itbs=1

Tools
• What is the JVM doing:

– dtrace, hprof, introscope, jconsole,
visualvm, yourkit, azul zvision

• Invasive JVM observation tools
– bci, jvmti, jvmdi/pi agents, jmx, logging

• What is the OS doing:
– dtrace, oprofile, vtune

• What is the network disk doing:
– Ganglia, iostat, lsof, netstat, nagios

furiously fast writes

• Append only writes
– Sequential disk access

• No locks in critical path
• Key based atomicity

client
issues
write n1

partitioner commit log

apply to

memory
n2

find node

furiously fast writes
• Use separate disks for commitlog

– Don’t forget to size them well
– Isolation difficult in the cloud..

• Memtable/SSTable sizes
– Delicately balanced with GC

• memtable_throughput_in_mb

Cassandra on EC2 cloud

*Corey Hulen, EC2

Cassandra on EC2 cloud

Compactions
K1 < Serialized data >

K2 < Serialized data >

K3 < Serialized data >

--

--

--

Sorted

K2 < Serialized data >

K10 < Serialized data >

K30 < Serialized data >

--

--

--

Sorted

K4 < Serialized data >

K5 < Serialized data >

K10 < Serialized data >

--

--

--

Sorted

MERGE SORT

Loaded in memory

K1 < Serialized data >

K2 < Serialized data >

K3 < Serialized data >

K4 < Serialized data >

K5 < Serialized data >

K10 < Serialized data >

K30 < Serialized data >

Sorted

K1 Offset

K5 Offset

K30 Offset

Bloom Filter

Index File

Data File

D E L E T E D

Compactions

• Intense disk io & mem churn
• Triggers GC for tombstones
• Minor/Major Compactions
• Reduce priority for better reads
• Other Parameters -

– CompactionManager.
minimumCompactionThreshold=xxxx

Example: compaction in
realworld, cloudkick

reads design

reads performance
• BloomFilter used to identify the right file
• Maintain column indices to look up columns

– Which can span different SSTables
• Less io than typical b-tree
• Cold read: Two seeks

– One for Key lookup, another row lookup
• Key Cache

– Optimized in latest cassandra
• Row Cache

– Improves read performance
– GC sensitive for large rows.

• Most (google) applications require single row
transactions*

*Sanjay G, BigTable Design, Google.

Client Performance
Marshal Arts:

Ser/Deserialization

• Clients dominated by Thrift, Avro
– Hector, Pelops

• Thrift: upgrade to latest: 0.5, 0.4
• No news: java.io.Serializable is S.L..O.…W
• Use “transient”
• avro, thrift, proto-buf
• Common Patterns of Doom:

– Death by a million gets

Serialization + Deserialization
uBench

• http://code.google.com/p/thrift-protobuf-compare/wiki/BenchmarkingV2

Adding Nodes
• New nodes

– Add themselves to busiest node
– And then Split its Range

• Busy Node starts transmit to new node
• Bootstrap logic initiated from any node, cli, web
• Each node capable of ~40MB/s

– Multiple replicas to parallelize bootstrap
• UDP for control messages
• TCP for request routing

inter-node comm
• Gossip Protocol

– It’s exponential
– (epidemic algorithm)

• Failure Detector
– Accrual rate phi

• Anti-Entropy
– Bringing replicas to uptodate

http://historicromance.files.wordpress.com/2010/06/9248we-re-not-gossiping-posters.jpg

Bloom Filter: in full bloom
• “constant” time
• size:compact
• false positives
• Single lookup

for key in file
• Deletion
• Improve

– Counting BF
– Bloomier filters

Birthdays, Collisions &
Hashing functions

• Birthday Paradox
For the N=21 people in this room
Probability that at least 2 of them share same birthday is

~0.47
• Collisions are real!
• An unbalanced HashMap behaves like a list O(n) retrieval
• Chaining & Linear probing
• Performance Degrades
• with 80% table density

•

the devil’s in the details

CFS
• All in the

family!
• denormalize

Memtable
• In-memory
• ColumnFamily specific
• throughput

determines size before
flush

• Larger memtables can
improve reads

SSTable
• MemTable “flushes”

to a SSTable
• Immutable after
• Read: Multiple

SSTable lookups
possible

• Chief Execs:
– SSTableWriter
– SSTableReader

Write: Runtime threads

Writes: runtime mem

Example: Java Overheads

writes: monitors

U U I D
• java.util.UUID is slow

– static use leads to contention
SecureRandom
• Uses /dev/urandom for seed initialization

-Djava.security.egd=file:/dev/urandom
• PRNG without file is atleast 20%-40% better.
• Use TimeUUIDs where possible – much faster
• JUG – java.uuid.generator

• http://github.com/cowtowncoder/java-uuid-generator
• http://jug.safehaus.org/
• http://johannburkard.de/blog/programming/java/Java-UUID-generators-compared.html

http://johannburkard.de/blog/programming/java/Java-UUID-generators-compared.html

synchronized

• Coarse grained locks
• io under lock
• Stop signal on a highway
• java.util.concurrent does not mean no

locks
• Non Blocking, Lock free, Wait free

collections

Scalable Lock-Free Coding Style

• Big Array to hold Data
• Concurrent writes via: CAS & Finite State

Machine
– No locks, no volatile
– Much faster than locking under heavy load
– Directly reach main data array in 1 step

• Resize as needed
– Copy Array to a larger Array on demand
– Use State Machine to help copy
– “ Mark” old Array words to avoid missing late

updates

Non-Blocking HashMap

0 100 200 300 400 500 600 700 800
0

200

400

600

800

1000

1200

Threads

M
-o

ps
/s

ec

0 100 200 300 400 500 600 700 800
0

200

400

600

800

1000

1200

Threads

M
-o

ps
/s

ec

NB-99

CHM-99

NB-75

CHM-75

1K Table 1M Table

NB

CHM

Azul Vega2 – 768 cpus

Cassandra uses High Scale
Non-Blocking Hashmap

public class BinaryMemtable implements IFlushable
{
…

private final Map<DecoratedKey,byte[]> columnFamilies =
new NonBlockingHashMap<DecoratedKey, byte[]>();

/* Lock and Condition for notifying new clients about Memtable
switches */

private final Lock lock = new ReentrantLock(); Condition condition;
…
}
public class Table
{
…

private static final Map<String, Table> instances = new
NonBlockingHashMap<String, Table>();

…
}

GC-sensitive elements within
Cassandra

• Compaction triggers System.gc()
– Tombstones from files

• “GCInspector”
• Memtable Threshold, sizes
• SSTable sizes
• Low overhead collection choices

Garbage Collection
• Pause Times

if stop_the_word_FullGC > ttl_of_node
=> failed requests; failure accrual & node repair.

• Allocation Rate
– New object creation, insertion rate

• Live Objects (residency)
– if residency in heap > 50%
– GC overheads dominate.

• Overhead
– space, cpu cycles spent GC

• 64-bit not addressing pause times
– Bigger is not better!

Memory Fragmentation
• Fragmentation

– Performance degrades over time
– Inducing “Full GC” makes problem go away
– Free memory that cannot be used

• Reduce occurrence
– Use a compacting collector
– Promote less often
– Use uniform sized objects

• Solution – unsolved
– Use latest CMS with CR:6631166
– Azul’s Zing JVM & Pauseless GC

CASSANDRA-1014

Best Practices:
Garbage Collection

• GC Logs are cheap even in
production

-Xloggc:/var/log/cassandra/gc.log
-XX:+PrintGCDetails
-XX:+PrintGCTimeStamps -XX:+PrintTenuringDistribution
-XX:+PrintHeapAtGC

• Slightly expensive ones:
-XX:PrintFLSStatistics=2 -XX:CMSStatistics=1

-XX:CMSInitiationStatistics

Sizing: Young Generation

• Should we set –Xms == -Xmx ?
• Use –Xmn (fixed eden)

survivor spaces

allocations {new Object();}

eden

promotion

old generation
allocation by jvm

survivor ratio

Tenuring
Threshold

http://simpsons.wikia.com/wiki/File:Lisa_Simpson2.png

Tuning CMS
• Don’t promote too often!

– Frequent promotion causes fragmentation
• Size the generations

– Min GC times are a function of Live Set
– Old Gen should host steady state comfortably

• Parallelize on multicores:
– -XX:ParallelCMSThreads=4
– -XX:ParallelGCThreads=4

• Avoid CMS Initiating heuristic
– -XX:+UseCMSInitiationOccupanyOnly

• Use Concurrent for System.gc()
– -XX:+ExplicitGCInvokesConcurrent

http://simpsons.wikia.com/wiki/File:Abraham_Simpson.png

Summary
Design & Implementation of Cassandra takes advantages
of strengths while avoiding common JVM issues.
• Locks:

– Avoids locks in critical path
– Uses non-blocking collections, TimeUUIDs!
– Still Can’t use all my multi-cores..?

>> Other bottlenecks to find!
• De/Serialization:

– Uses avro, thrift!
• Object overhead

– Uses mostly byte[], primitives where possible!
• Garbage Collection

– Mitigate: Monitor, Measure foot print.
– Work in progress by all jvm vendors!

Cassandra starts from a great footing from a JVM standpoint
and will reap the benefits of the platform!

http://www.google.com/imgres?imgurl=http://www.eweekeurope.co.uk/wp-content/uploads/2010/08/java.jpg&imgrefurl=http://www.eweekeurope.co.uk/comment/google-suit-now-we-know-what-java-means-to-oracle-8991&usg=__6VQGpRxK_vWa4phS2jlzomxtI5E=&h=300&w=300&sz=11&hl=en&start=1&zoom=1&tbnid=4e9FOkYzE0vwrM:&tbnh=116&tbnw=116&prev=/images%3Fq%3Djava%26um%3D1%26hl%3Den%26sa%3DN%26tbs%3Disch:1&um=1&itbs=1
http://www.h-online.com/imgs/43/5/0/7/5/5/9/cassandra200.jpg-323ea7227766a48a.jpeg

Q&A
References
• Verner Wogels, Eventually Consistent

http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
• Bloom, Burton H. (1970), "Space/time trade-offs in hash coding with

allowable errors"
• Avinash Lakshman, http://static.last.fm/johan/nosql-

20090611/cassandra_nosql.pdf
• Eric Brewer, CAP http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-

keynote.pdf
• Tony Printzeis, Charlie Hunt, Javaone Talk

http://www.scribd.com/doc/36090475/GC-Tuning-in-the-Java
• http://github.com/digitalreasoning/PyStratus/wiki/Documentation

• http://www.cs.cornell.edu/home/rvr/papers/flowgossip.pdf
• Cassandra on Cloud, http://www.coreyhulen.org/?p=326

http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://github.com/digitalreasoning/PyStratus/wiki/Documentation
http://www.coreyhulen.org/?p=326

Count what is countable, measure what is measurable,
and what is not measurable, make measurable

 -Galileo

	Cache & Concurrency considerations for a high performance Cassandra
	Trail ahead
	A feather in the CAP
	��Count what is countable, measure what is measurable, and what is not measurable, make measurable� -Galileo��
	Elements of Cache Performance�Metrics
	Elements of Cache Performance: � “Think Locality”
	Real World Performance
	yahoo cloud store benchmark�50/50 – Update Heavy
	yahoo cloud store benchmark�95/5 – read heavy
	 JVM in BigData Land!
	Tools
	furiously fast writes
	furiously fast writes
	Cassandra on EC2 cloud
	Cassandra on EC2 cloud
	Slide Number 16
	Compactions
	Compactions
	Example: compaction in realworld, cloudkick
	reads design
	reads performance
	Client Performance�Marshal Arts:�Ser/Deserialization
	Serialization + Deserialization uBench
	Adding Nodes
	inter-node comm
	Bloom Filter: in full bloom
	�Birthdays, Collisions &� Hashing functions�	
	the devil’s in the details�
	CFS
	Memtable
	SSTable
	Write: Runtime threads
	Writes: runtime mem
	Example: Java Overheads
	writes: monitors
	 U U I D
	 synchronized
	Scalable Lock-Free Coding Style�
	Non-Blocking HashMap
	Cassandra uses High Scale Non-Blocking Hashmap �
	GC-sensitive elements within Cassandra
	Garbage Collection
	Memory Fragmentation
	CASSANDRA-1014
	�Best Practices:�Garbage Collection
	Sizing: Young Generation
	Tuning CMS
	 Summary
	Q&A
	��Count what is countable, measure what is measurable, and what is not measurable, make measurable� -Galileo��

