
IBM Software Group

1 http://tuscany.apache.org

RESTful SCA with Apache Tuscany

Luciano Resende
lresende@apache.org
http://lresende.blogspot.com

Jean-Sebastien Delfino
jsdelfino@apache.org
http://jsdelfino.blogspot.com

IBM Software Group

2 http://tuscany.apache.org

Agenda

•  What is Apache Tuscany
•  What is Apache Wink
•  RESTFul SCA Overview
•  Usage and architecture walk-through

-  Including a look at various scenarios
•  What’s next
•  Getting involved

IBM Software Group

3 http://tuscany.apache.org

What is Apache Tuscany ?

IBM Software Group

4 http://tuscany.apache.org

Apache Tuscany

•  Apache Tuscany provides a component based
programming model which simplifies development,
assembly and deployment and management of
composite applications.

•  Apache Tuscany implements SCA standards
defined by OASIS OpenCSA and extensions
based on real user feedback.

4

IBM Software Group

5 http://tuscany.apache.org

Building Applications using SCA

•  Business functions are
defined as SCA
Components

–  That expose services
-  Using different

communication
protocols (bindings)

–  And have dependencies on
other services through
References

Store

Catalog

Currency
Converter

http
currencyCode=USD

Fruit
Catalog

ShoppingCart

atom

jsonrpc

Collection

Total

IBM Software Group

6 http://tuscany.apache.org

SCA Overview

Composite A

Component
A Service

Service Binding
Web Service
JMS
SLSB
Rest
JSONRPC
JCA
…

Reference Binding
Web Service
JMS
SLSB
Rest
JSONRPC
JCA
…

Component
B

Service Interface
- Java
- WSDL

Reference Interface

Reference

property setting

Property

promote promote wire

Implementation
Java
BPEL
PHP
SCA composite
Spring
EJB module
…

- Java
- WSDL

IBM Software Group

7 http://tuscany.apache.org

What is Apache Wink?

IBM Software Group

8 http://tuscany.apache.org

Apache Wink

•  Apache Wink is a simple yet solid open source framework for building
RESTful Web services. It is comprised of a Server module and a Client
module for developing and consuming RESTful Web services.

•  The Wink Server module is a complete implementation of the JAX-RS
v1.0 specification. On top of this implementation, the Wink Server
module provides a set of additional features that were designed to
facilitate the development of RESTful Web services.

•  The Wink Client module is a Java based framework that provides
functionality for communicating with RESTful Web services. The
framework is built on top of the JDK HttpURLConnection and adds
essential features that facilitate the development of such client
applications.

IBM Software Group

9 http://tuscany.apache.org

RESTful SCA
Overview

IBM Software Group

10 http://tuscany.apache.org

REST-related user stories

•  As a developer, I want to expose new or existing services over HTTP in
REST styles with the flexibility to use different wire formats including (but
not limited to) JSON, XML.

•  As a developer, I want to allow RPC services to be accessed via HTTP
GET method in REST styles to take advantage of HTTP caching.

•  As a developer, I want to configure a service exposed using REST to use
different cache control mechanisms to maximize performance of static
resources and or cache dynamic content.

•  As a developer, I want to invoke existing RESTful services via a business
interface without dealing with the HTTP client APIs.

•  As a developer, I want to compose services (both RESTful and non-
RESTful) into a solution using SCA.

November 4, 2010

IBM Software Group

11 http://tuscany.apache.org

A win-win situation using SCA and JAX-RS

•  SCA gives us the power to declare, configure and compose services in
a technology neutral fashion.

•  REST is an important aspect of the Web 2.0 world. Building RESTful
services can be a challenge as REST is just an architectural style.
JAX-RS emerges as the standard REST programming model.

•  A balanced middle-ground to leverage the power of declarative
services using SCA and annotation based REST/HTTP mapping using
JAX-RS (without tying business logic to the technology specifics) (try to
avoid JAX-RS APIs directly).

IBM Software Group

12 http://tuscany.apache.org

Tuscany’s offerings for REST

•  The Tuscany Java SCA runtime provides the integration with REST
services out of the box via several extensions.
-  Tuscany REST binding type (binding.rest)

•  Leverage JAX-RS annotations to map business operations to HTTP operations
such as POST, GET, PUT and DELETE to provide a REST view to SCA
services.

•  Support RPC over HTTP GET
•  Allow SCA components to invoke existing RESTful services via a JAX-RS

annotated interfaces without messing around HTTP clients.

-  Tuscany JAX-RS implementation type (implementation.jaxrs)
•  JAX-RS applications and resources can be dropped into the SCA assembly as

JAX-RS implementation (implementation.jaxrs).

-  Tuscany also enrich the JAX-RS runtime with more databindings to provide
support for data representations and transformation without the
interventions from application code.

IBM Software Group

13 http://tuscany.apache.org

Runtime overview

•  Related Tuscany modules

-  interface-java-jaxrs (Introspection of JAX-RS annotated interfaces)

-  binding-rest (binding.rest XML/Java model)
-  binding-rest-runtime (runtime provider)

-  implementation-jaxrs (implementation.jaxrs XML/Java model)
-  implementation-jaxrs-runtime (runtime provider)

•  Tuscany uses Apache Wink 1.1.1-incubating as the JAX-RS runtime

-  Contributions were made to the Wink runtime to facilitate embedding Wink
and it’s going to be available in Wink 1.1.2 which should be available in the
near future

IBM Software Group

14 http://tuscany.apache.org

Usage and architecture walk-through

IBM Software Group

15 http://tuscany.apache.org

Use Case #1:
Exposing an SCA service to HTTP using REST
•  We have an existing SCA service and want to make it RESTful

1.  Define a Java interface with JAX-RS annotations
•  Provide URI
•  Map between business operations and HTTP methods
•  Map Input/Output (Path segments, query parameters, headers, etc)
•  Configure wire formats

2.  Each method should have a compatible operation in the SCA service

IBM Software Group

16 http://tuscany.apache.org

REST Services

•  Supports exposing existing SCA components as RESTFul services

•  Exposing a service as RESTful resource

•  Consuming REST Services
-  Multiple JavaScript frameworks such as Dojo (XHR)
-  Regular Web browsers
-  Regular utilities such as cUrl, wGet, etc
-  SCA component

<component name=”Catalog">
 <implementation.java class="services.FruitsCataloglmpl" />
 <service name=”Catalog">
 <t:binding.rest uri="http://localhost:8080/Cartalog" >
 <t:wireFormat.json />
 <t:operationSelector.jaxrs />
 </t:binding.rest>
 </service>
</component>

Fruit
Catalog

json

IBM Software Group

17 http://tuscany.apache.org

Mapping business interfaces using JAX-RS

@Remotable
public interface Catalog{

 @GET
 Item[] getItem();

 @GET
 @Path("{id}")
 Item getItemById(@PathParam("id") String itemId);

 @POST
 void addItem(Item item);

 @PUT
 void updateItem(Item item);

 @DELETE
 @Path("{id}")
 void deleteItem(@PathParam("id") String itemId);

}

IBM Software Group

18 http://tuscany.apache.org

REST service binding runtime architecture

IBM Software Group

19 http://tuscany.apache.org

Use Case #2:
Allowing HTTP GET access to an SCA RPC service
•  We have an existing RPC SCA service and want to allow remote

accesses using HTTP GET

-  No standard JAX-RS client is defined by the JAX-RS spec

-  We need to figure the URI, parameter passing (positional or name/value
pairs, headers, etc)

IBM Software Group

20 http://tuscany.apache.org

RPC Services over HTTP GET

•  The REST binding provides mapping your RPC style calls over HTTP
GET

•  Exposing a service as RESTful resource

•  Client Invocation
-  http://localhost:8085/EchoService?method=echo&msg=Hello RPC
-  http://localhost:8085/EchoService?
method=echoArrayString&msgArray=Hello RPC1&msgArray=Hello RPC2"

<component name=”Catalog">
 <implementation.java class="services.FruitsCataloglmpl" />
 <service name=”Catalog">
 <t:binding.rest uri="http://localhost:8080/Cartalog" />
 <t:wireFormat.json />
 <t:operationSelector.rpc />
 </t:binding.rest>
 </service>
</component>

Fruit
Catalog

json

IBM Software Group

21 http://tuscany.apache.org

Mapping queryString to RPC method parameters

@Remotable
public interface Echo {

 String echo(@QueryParam("msg") String msg);

 int echoInt(int param);

 boolean echoBoolean(boolean param);

 String [] echoArrayString(@QueryParam("msgArray") String[] stringArray);

 int [] echoArrayInt(int[] intArray);

}

IBM Software Group

22 http://tuscany.apache.org

Design note

•  As of today, we have a special path to handle the RPC over HTTP
GET in the REST binding runtime (operationSelector.rpc). Potentially,
we can unify this approach with the runtime design that implements the
logic for Use case #1.
-  Imaging that you are writing a JAX-RS resource method that supports the

RPC style (GET with a list of query parameters, one of them is the
“method”)

•  For a service method that is not annotated with JAX-RS http method
annotations, we will generate a JAX-RS resource class with a mapping
so that:
-  @GET
-  @Path
-  @QueryParam for each of the arguments

IBM Software Group

23 http://tuscany.apache.org

Use Case #3:
Access external RESTful services using SCA
•  We want to access external RESTful services from an SCA component

using SCA references (w/ dependency injection) instead of calling
technology APIs such as HTTP client

IBM Software Group

24 http://tuscany.apache.org

Tuscany SCA client programming model for JAX-RS

•  Model as an SCA reference configured with binding.rest in the client
component

•  Use a JAX-RS annotated interface to describe the outbound HTTP
invocations (please note we use the same way to handle inbound
HTTP invocations for RESTful services exposed by SCA)

•  A proxy is created by Tuscany to dispatch the outbound invocation per
the metadata provided by the JAX-RS annotations (such as Path for
URI, @GET for HTTP methods, @QueryParam for parameters, etc).
-  If no HTTP method is mapped, we use the RPC over HTTP GET

IBM Software Group

25 http://tuscany.apache.org

Sample configuration

•  To invoke a RESTful resource such as getPhotoById(String id):
@GET
@Path(“/photos/{id}”)
InputStream getPhotoById(@PathParam(“id”) String id);

•  SCA Reference
<reference name=“photoService”>

 <interface.java interface=“…”/>
 <tuscany:binding.rest uri=“http://example.com/”/>

</reference>

IBM Software Group

26 http://tuscany.apache.org

REST reference binding runtime architecture

IBM Software Group

27 http://tuscany.apache.org

Use case #4:
Drop in a JAX-RS application into SCA
•  We already have a JAX-RS application that is written following JAX-RS

programming model (to take full advantage of JAX-RS for the HTTP
protocol beyond just business logic).

•  We want to encapsulate it as an SCA component so that it can be used
in the SCA composite application. (Potentially be able to use SCA
@Reference or @Property to inject service providers or property
values).

IBM Software Group

28 http://tuscany.apache.org

Tuscany implemention.jaxrs

•  Tuscany introduced an implementation type (under tuscany
namespace) to provide out-of-box support for component using JAX-
RS

IBM Software Group

29 http://tuscany.apache.org

implementation.jaxrs runtime archirecture

•  Each root resource is translated into an SCA service with binding.rest

IBM Software Group

30 http://tuscany.apache.org

Sample configuration for implementation.jaxrs

•  Composite

<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
 xmlns:tuscany="http://tuscany.apache.org/xmlns/sca/1.1"
 targetNamespace="http://sample/jaxrs"
 name="HelloWorld">

 <component name="HelloWorldApp">
 <tuscany:implementation.jaxrs application="helloworld.jaxrs.HelloWorldApp"/>
 </component>

</composite>

HelloWorldApp

IBM Software Group

31 http://tuscany.apache.org

Summary

IBM Software Group

32 http://tuscany.apache.org

Summary

•  What do we support today ?
-  Expose SCA Services as RESTFul services
-  Expose RPC SCA Services via HTTP
-  Declaratively configure RESTFul services

•  Cache Controls Headers and general HTTP Headers
-  Consume RESTFul services as SCA References
-  Re-use JAX-RS Resources into your composite applications

IBM Software Group

33 http://tuscany.apache.org

What’s Next ?

IBM Software Group

34 http://tuscany.apache.org

What’s next ?

•  What’s on my “next” todo list ?
-  WADL Support via service endpoint ?wadl
-  Support for partial response and partial updates

•  What’s on yours ?
-  Submit your suggestions to our user / development list

IBM Software Group

35 http://tuscany.apache.org

Getting Involved

IBM Software Group

36 http://tuscany.apache.org

Resources
 Apache Tuscany

  http://tuscany.apache.org

 Getting Involved
  http://tuscany.apache.org/getting-involved.html

 Tuscany SCA Java Releases
  http://tuscany.apache.org/sca-java-2x-releases.html

 Tuscany SCA Java Documentation
  http://tuscany.apache.org/java-sca-documentation-menu.html

 Apache Wink
  http://incubator.apache.org/wink

 Getting Involved
  http://incubator.apache.org/wink/community.html

 Apache Wink Downloads
  http://incubator.apache.org/wink/downloads.html

IBM Software Group

37 http://tuscany.apache.org

Thank You !!!

