
Rohit Kelapure
HTTP://WWW.LINKEDIN.COM/IN/ROHITKELAPURE

HTTP://TWITTER.COM/RKELA

November 5, 2010

THE BUSY DEVELOPER'S

GUIDE TO JVM

TROUBLESHOOTING

http://www.linkedin.com/in/rohitkelapure
http://twitter.com/rkela

2

Agenda

• Application Server component overview

• Support Assistant

• JVM Troubleshooting Tools

• Problem Determination Tools

• Scenario based problem resolution

• How customers get in trouble

• BadApp Demo

• Q&A

3

Component Overview

4

Support Assistant
Workbench to help with Problem Determination

5

Analyze Problem

6

Tools
Problem Artifact Monitoring & Analysis

Memory leaks

Out of Memory errors

Application Unresponsive

Verbose Garbage collection

log (native_stdout.log)

• PMAT,GCMV

• VisualGC

• jps, jstat, jstatd, jinfo

High CPU, Crash, Hang,

Performance bottleneck,

Unexpected termination

Javadump, Javacore

(javacore*.txt)

• Thread Monitor & Dump

Analyzer (TMDA),

• Samurai TDA

• Jstack

Lock Contention

Low CPU at high load

Threads (Connection to

running JVM)

• Sun VisualVM

• JConsole

• IBM Health Center

• Jrockit Mission Control

Memory Leak

Out of Memory errors

Heapdump (*.phd, *.txt,

*.hprof)

• MAT

• HeapAnalyzer

• JHat

Native Memory Leak

Anomalies

Unexpected Crash

System or core dump

(core.dmp, user.dmp), Files

must be processed with

jextract tool

• Monitor - GCMV, Examine

- pmap & VMMap, Track -

DebugDiag, libumem,

valgrind, cmalloc & NJAMD

7

Runtime Serviceability aids

• Troubleshooting panels in the admin console

• Performance Monitoring Infrastructure metrics

• Diagnostic Provider Mbeans

– Dump Configuration, State and run self-test

• Application Response Measurement/Request Metrics

– Follow transaction end-to-end and find bottlenecks

• Trace logs & First Failure Data Capture

• Runtime Performance Advisors

– Memory leak detection, session size, …

• Specialized tracing and Runtime checks

– Tomcat Classloader Leak Detection

– Session crossover, Connection leak, ByteBuffer leak detection

– Runaway CPU thread protection

One more tool and I am
going to scream

9

Most common JVM Problem

Scenarios
Functional Problems

• Unexpected Exceptions, Compatibility

OOM Errors

• Java Heap ,Native Heap Classloaders

Hangs

• Synchronized resources, GC Pause times

Crash

• JVM errors, JIT errors, JNI errors

High CPU

• Spin loops

Find Dominating consumer

Actors

• Usage patterns

• Average response/service time, # of requests/transactions, # of
live HTTP sessions

Application

• Locks, External Systems

• Web server thread pools, Web & EJB Container, Threadpools,
DB conn pool sizes

JVM/OS
• Memory, Hardware Management

Hardware
• CPU, Paging Memory, Disk I/O, Network

WTF is wrong with my app

• Why does my app. run slow every time I do ?

• Why does my app. have erratic response times ?

• Why am I getting Out of Memory Errors ?

• What is my applications memory footprint ?

• Which parts of my app. are CPU intensive ?

• How did my JVM vanish without a trace ?

• Why is my application unresponsive ?

• What monitoring do I put in place for my app. ?

App runs slow when I do xxx ?
• Understand impact of activity on components

– Look at the thread & method profiles

• IBM Java Health Center

• Visual VM

• Jrockit Mission Control

• JVM method & dump trace - pinpoint performance problems.

– Shows entry & exit times of any Java method

• Method to trace to file for all methods in tests.mytest.package

– Allows taking javadump, heapdump, etc when a method is hit

• Dump javacore when method testInnerMethod in an inner class

TestInnerClass of a class TestClass is called

– Use Btrace, -Xtrace * –Xdump to trigger dumps on a range of

events

• gpf, user, abort, fullgc, slow, allocation, thrstop, throw …

• Stack traces, tool launching

App. has erratic response times ?

• Verbose gc should be enabled by default
– <2% impact on performance

• VisualGC, GCMV &PMAT : Visualize GC output
– In use space after GC

• Positive gradient indicates memory leak
– Increased load (use for capacity plan)

– Memory leak (take HDs for PD.)

• Chose the right GC policy
– Optimized for “batch” type applications, consistent allocation profile

– Tight responsiveness criteria, allocations of large objects

– High rates of object “burn”, large # of transitional objects

– 12, 16 core SMP systems with allocation contention (AIX only)

• GC overhead > 10%  wrong policy | more
tuning

• Enable compressed references for 64 bit JVM ?

Out Of Memory Errors ?
• JVM Heap sized incorrectly

– NOT recommended Xms == Xmx

– GC adapts heap size to keep occupancy [40, 70]%

• Determine heap occupancy of the app. under
load
– Xmx = 43% larger than max. occupancy of app.

• For 700MB occupancy , 1000MB Max. heap is reqd. (700 +43% of 700)

• Analyze heapdumps & system dumps with dump
tools
– Lack of Java heap or Native heap

• Finding which methods allocated large objects
– Prints stacktrace for all objects above 1K

• Enable Java Heap and Native heap monitoring
– JMX and metrics output by JVM

• Classloader exhaustion

Applications memory footprint ?

• HPROF – profiler shipped with JDK – uses JVMTI

– Analysis of memory usage -Xrunhprof:heap=all

• Performance Inspector tools - JPROF Java Profiling Agent

– Capture state of the Java Heap later processed by

HDUMP

• Use MAT to investigate heapdumps & system dumps

– Find large clumps, Inspect those objects, What retains

them ?
• Why is this object not being garbage collected

– List Objects > incoming refs, Path to GC roots, Immediate dominators

• Limit analysis to a single application in a JEE environment

– Dominator tree grouped by Class Loader

• Set of objects that can be reclaimed if we could delete X

– Retained Size Graphs

• Traditional memory hogs like HTTPSession, Cache

– Use Object Query Language (OQL)

CPU intensive parts of the app?

• HPROF - CPU spends most of its time
– -Xrunhrof:cpu=samples, -Xrunhprof:cpu=time

• JPROF – method level execution times, who

calls whom, etc.

– Generate startup script & set the JVM argument
– "-agentlib:jprof=rtarcf,callflow,logpath=./jprof" "-Xjit:disableInlining“

– Output visualized using VPA

• ThreadDumps/Javacores - Poor mans profiler

– Periodic javacores

– Thread analysis – TMDA

How did my JVM vanish

without trace ?
• JVM Process Crash Usual Suspects

– Bad JNI calls, Segmentation violations, Call Stack Overflow

– Native memory leaks - Object allocation fails with sufficient space in the JVM heap

– Unexpected OS exceptions (out of disk space, file handles), JIT failures

• Monitor the OS process size

• Runtime check of JVM memory allocations –

– Xcheck:memory

• Native memory usage - Create a core dump on an OOM

• JNI code static analysis -Xcheck:jni (errors, warnings, advice)

• GCMV provides scripts and graphing for native memory
– Windows “perfmon“, Linux “ps” & AIX “svmon”

• Find the last stack of native code executing on the thread

during the crash

18

What do I monitor ?

no arch.
plan

No migration
plan

No change records

No Capacity plan

No Production traffic profile

Changes put directly in Prod.

No load & Stress testing

Communication breakdown

No education

Application Error

Test environment != Production

Top

Malpractices

Demo, Q&A

• Eclipse Memory Analyzer

• Sun VisualVM

• Sun Visual GC

• Jconsole

• Samurai TDA

• Thread Monitor Dump

Analyzer

• IBM Health Monitor

• Jrockit Mission Control

