THE BUSY DEVELOPER'S
GUIDE TO JVM
TROUBLESHOOTING

November 5, 2010

http://www.linkedin.com/in/rohitkelapure
http://twitter.com/rkela

Agenda

Application Server component overview
Support Assistant

JVM Troubleshooting Tools

Problem Determination Tools

Scenario based problem resolution
How customers get in trouble

BadApp Demo

Q&A

NODRYyoedy

Leading the Wave £
of Open Source

Component Overview

Application server Seripting client

I

Transactions

Performance infrastructure

: i Admin application
. Web browser client
Canﬁﬁ-;li;;amm > Wieh containar .‘
2
u:':» | SIP container | » |z Web server, plug-in
= b= 1]
2 E |@ Caching proxy *
- z | Portlet container | g 'g 9 proxy
Juusl = @
2 g |8
m — o]
& EJB container U
é’ k] % ld——] Client container
=3
ropicaton | JCA services ® :l
database | managed by external provider
| Extensions registry -l (MQ?Q 4 Pre
| Messaging engine
manages
m < Service integration bus | >
Web services engine Message queues
I
\‘ Web services
rovider or
Naming and directory pga:;ay

PD infrastructure

WLM and HA™ * Available only with

Network Deployment edition

Security infrastructure

< Ports | | Environment settings >

S S
N

Leading the Wave
of Open Source

Support Assistant

Workbench to help with Problem Determination

Welcome to IBM Support Assistant

First Steps
Find Information

~ Tutorialy
Easily find the information you need including product specific GO through ¢
information and search capabilities

Analyze Problem
Diagnose and analyze problems through serviceabdlity tools
collection of diagnostic artifacts, and guidance through problem

determmation

Collect and Send Data

r

Collect problem determination files using automated data
collection. Use these files for self-help problem determination, or
use the Service Request function to send the fies with a service
request to |IBM

Latest News

Daoe Collochon and Marm

>
T,
Q)
O
-
(D
0O
O
=

Leading the Wave
of Open Source

Analyze Problem

T Tools (- Colect Data @ Guided Troubleshooter

Case/Incident

\default i | [select|

Tools Catalog Find new add-ons
Tool Name Version

[Tech Preview] Database Connection Pool Analyzer for IBM WebSphere Appiication Server 1.5.0.02

[Tech Preview] HeapAnalyzer 3.9.8.00
[Tech Preview] IBM Pattern Modeling and Analysis Tool for Java Garbage Collector (PMAT) 3.9.6.01
[Tech Preview] IBM Port Scanning Tool 1.1.0.00
[Tech Preview] IBM Thread and Monitor Dump Analyzer for Java (TMDA) 3.9.6.01
[Tech Preview] IBM Trace and Request Analyzer for WebSphere Application Server 2.1.0.03
[Tech Preview] IBM Web Server Plug-in Analyzer for WebSphere Application Server (WSPA) 3.5.0.02
[Tech Preview] Memory Dump Diagnostic for Java (MDD4J) version 3.0 3.0.1.beta-20091201202124
[Tech Preview] ThreadAnalyzer (Deprecated) 6.0.3.02
IBM Assist On-site 1.0.0.04
1BM Monitoring and Diagnostic Tools for Java™ - Dump Analyzer 2.2.2.20090926232659
1BM Monitoring and Diagnostic Tools for Java™ - Garbage Collection and Memory Visualizer 2.4.0.20100127
1BM Monitoring and Diagnostic Tools for Java™ - Health Center v1.2 Beta 1.2.0.20100315
1BM Monitoring and Diagnostic Tools for Java™ - Memory Analyzer (Tech Preview) 0.5.2.200910011055
Log Analyzer 4.5.0.200909240916
Memory Dump Diagnostic for Java (MDD4J) 2.0.0.20081219132011
Symptom Editor 4.5.0.200909231042
Visual Configuration Explorer (Tech Preview) 1.0.16.200909020832

e

Leading the Wave
of Open Source

T~

Memory leaks
Out of Memory errors
Application Unresponsive

High CPU, Crash, Hang,
Performance bottleneck,
Unexpected termination

Lock Contention
Low CPU at high load

Memory Leak
Out of Memory errors

Native Memory Leak
Anomalies
Unexpected Crash

Tools

Verbose Garbage collection
log (native_stdout.log)

Javadump, Javacore
(Javacore*.txt)

Threads (Connection to
running JVM)

Heapdump (*.phd, *.txt,
*.hprof)

System or core dump
(core.dmp, user.dmp), Files
must be processed with
jextract tool

* PMAT,GCMV
* VisualGC
* jps, jstat, jstatd, jinfo

* Thread Monitor & Dump
Analyzer (TMDA),

« Samurai TDA

« Jstack

* Sun VisualVM

» JConsole

* IBM Health Center
 Jrockit Mission Control

* MAT
* HeapAnalyzer
* JHat

* Monitor - GCMV, Examine
- pmap & VMMap, Track -
DebugDiag, libumem,
valgrind, cmalloc & NJAMD

> Runtime Serviceability aids

« Troubleshooting panels in the admin console

« Performance Monitoring Infrastructure metrics

« Diagnostic Provider Mbeans
— Dump Configuration, State and run self-test

Application Response Measurement/Request Metrics
— Follow transaction end-to-end and find bottlenecks

« Trace logs & First Failure Data Capture

« Runtime Performance Advisors

— Memory leak detection, session size, ...

« Specialized tracing and Runtime checks

— Tomcat Classloader Leak Detection

— Session crossover, Connection leak, ByteBuffer leak detection
Rgnaway CPU thread protection

NOD3Yded

Leading the Wave £
of Open Source

Gne morze tool and U am

going to scteam

NODH3Yoedy

Leading the Wave £
of Open Source

> Most common JVM Problem
Scenarios

Hangs
* Synchronized resources, GC Pause times

- Crash

g ° JVM errors, JIT errors, JNI errors

1 High CPU

3+ Spin loops

Find Dominating consumer

» Usage patterns

* Average response/service time, # of requests/transactions, # of
live HTTP sessions

» Locks, External Systems
« Web server thread pools, Web & EJB Container, Threadpools,
Application DB conn pool sizes
 Memory, Hardware Management]

Leading the Wave £
of Open Source

> WTFis wrong with my app?

 Why does my app. run slow every time | do ?

« Why does my app. have erratic response times ?
 Why am | getting Out of Memory Errors ?

What is my applications memory footprint ?

« Which parts of my app. are CPU intensive ?
 How did my JVM vanish without a trace ?

« Why is my application unresponsive ?

« What monitoring do | put in place for my app. ?

NOHayoed

Leading the Wave £
of Open Source

> App runs slow when | do xxx ?

U « Understand impact of activity on components
— Look at the thread & method profiles

m * |IBM Java Health Center
* Visual VM
n e Jrockit Mission Control

e JVM method & dump trace - pinpoint performance problems.
j — Shows entry & exit times of any Java method

m « Method to trace to file for all methods in tests.mytest.package
— Allows taking javadump, heapdump, etc when a method is hit
« Dump javacore when method testinnerMethod in an inner class
TestinnerClass of a class TestClass is called

O — Use Btrace, -Xtrace * —Xdump to trigger dumps on a range of
events

« gpf, user, abort, fullgc, slow, allocation, thrstop, throw ...

« Stack traces, tool launching

Leading the Wave £
of Open Source

App. has erratic response times ?

* Verbose gc should be enabled by default
— <2% impact on performance

* VisualGC, GCMV &PMAT : Visualize GC output

— In use space after GC

 Positive gradient indicates memory leak
— Increased load (use for capacity plan)
— Memory leak (take HDs for PD.)

* Chose the right GC policy

— Optimized for “batch” type applications, consistent allocation profile
— Tight responsiveness criteria, allocations of large objects

— High rates of object “burn”, large # of transitional objects

— 12, 16 core SMP systems with allocation contention (AlX only)

 GC overhead > 10% -> wrong policy | more
tuning

 Enable compressed references for 64 bit JVM ?

Leading the Wave £
of Open Source

> Out Of Memory Errors ?

JVM Heap sized incorrectly
— NOT recommended Xms == Xmx
— GC adapts heap size to keep occupancy [40, 70]%

IDetdermine heap occupancy of the app. under
oa

— Xmx = 43% larger than max. occupancy of app.
* For 700MB occupancy , 1000MB Max. heap is reqd. (700 +43% of 700)

An?lyze heapdumps & system dumps with dump
tools

— Lack of Java heap or Native heap

Finding which methods allocated large objects
— Prints stacktrace for all objects above 1K

Enable Java Heap and Native heap monitoring
— JMX and metrics output by JVM

Classloader exhaustion

NOD3Yded

Leading the Wave £
of Open Source

> Applications memory footprint ?

U « HPROF — profiler shipped with JDK — uses JVMTI

m — Analysis of memory usage -Xrunhprof:heap=all

n » Performance Inspector tools - JPROF Java Profiling Agent
— Capture state of the Java Heap later processed by

3' HDUMP

(D « Use MAT to investigate heapdumps & system dumps

— Find large clumps, Inspect those objects, What retains

them ?
* Why is this object not being garbage collected

— Dominator tree grouped by Class Loader
» Set of objects that can be reclaimed if we could delete X
— Retained Size Graphs

« Traditional memory hogs like HTTPSession, Cache
— Use Object Query Language (OQL)

— List Objects > incoming refs, Path to GC roots, Immediate dominators
« Limit analysis to a single application in a JEE environment

Leading the Wave =

of Open Source

> CPU Iintensive parts of the app?

U « HPROF - CPU spends most of its time
m — -Xrunhrof:cpu=samples, -Xrunhprof:.cpu=time

n « JPROF — method level execution times, who

3- calls whom, etc.

— Generate startup script & set the JVM argument
m — "-agentlib:jprof=rtarcf,callflow,logpath=./jprof" "-Xjit:disablelnlining”

— Output visualized using VPA
() ThreadDumps/Javacores - Poor mans profiler
O — Periodic javacores

— Thread analysis — TMDA

Leading the Wave £
of Open Source

NODH3Yoedy

Leading the Wave

How did my JVM vanish
without trace ?

JVM Process Crash Usual Suspects
— Bad JNI calls, Segmentation violations, Call Stack Overflow

— Native memory leaks - Object allocation fails with sufficient space in the JVM heap
— Unexpected OS exceptions (out of disk space, file handles), JIT failures

Monitor the OS process size
Runtime check of JVM memory allocations —
— Xcheck:memory
Native memory usage - Create a core dump on an OOM
JNI code static analysis -Xcheck:jni (errors, warnings, advice)

GCMV provides scripts and graphing for native memory
— Windows “perfmon®, Linux “ps” & AIX “svmon”

Find the last stack of native code executing on the thread
during the crash

of Open Source

What do | monitor ?

JDBC Connection Pool | JVM ServletSession SystemData | ThreadPool | Web
U Runtime Manager Applications
AllocateCount HeapSize ActiveCount CPUUsageSinceSe | ActiveCount RequestCount
ReturnCount UsedMemory CreateCount rverStarted ActiveTime ServiceTime
CreateCount InvalidateCount CreateCount ConcurrentRequests
CloseCount LiveCount DestroyCount
" FreePoolSize LifeTime PoolSize
PoolSize TimeSinceLastActivated DeclaredThreaHun
JDBCTime TimeoutinvalidationCount gCount
UseTime SessionObjectSize ™
WaitTime
WaitingThreadCount
PrepStmtCacheDiscardCount
CPU Memory Disk
HTTP
Server
: (100
processes) Total % CPU Total Memory Disk Service Time Per Disk
Web e Web _ User %CPU Real Memory Free Avg. Disk Queue Length
Clients S e . ;:1?:2::ISF EJB Wait %CPU Total Swap Space Disk transfer per second
e Container Database System %CPU Swap Space Used %Busy
Q‘ (25 threads)] Avg. CPU RunCueue Page In Disk reads
— g::ln ection Context Switching Page Out Disk writes
{10 objects) CPU per processor Pages/sec
‘ CPU usage per process Memory usage per process
= . ‘ Process% used
FScache% used
Queue Queue Scan Rate
Page faults

Leading the Wave
of Open Source

Jop
Malpractices

m
e
' N

Changes put directly in Prod.
No load & Stress testing
Communication breakdown

No education

Application Error

\0Hayoedy

{

Test environment = Production

o

N

Leading the Wave

of Open Source

Hemp, OXA

* Eclipse Memory Analyzer
e Sun VisualVM

« Sun Visual GC

e Jconsole

Samural TDA

Thread Monitor Dump
Analyzer

IBM Health Monitor
Jrockit Mission Control

| mﬂ
&

‘;

-
Leading the Wave
of Open Source

S P

ApacheCon #}

v
N =
4

o
E
O
)

Q
-l

s
v
Q.
o
“—
o

