
Bring Search Home
Uri Boness (JTeam) & Edwin Adriaansen (ilocal)



About ilocal
● Founded in 2004

● Goal: be the best website for finding companies 

● Currently 130 employees

● Surpassed established market players; number 
one website for local search in the Netherlands

● Expanding our business to other countries 



About ilocal
Search box with 

spelling suggestion, 
history etc.

Paid vs organic 
resultsFacet search

map



How did we start
● We outsourced most of the software development

● A commercial search engine (known by the founder) 
was licensed

● Learning from users experience



Why Commercial Software
● Off the shelf (quick start)

● Proved to be successful

● Maintenance organization in place



The problems

● Our ideas became standard available in their products

● We learned faster than our supplier

● Time to market took too long

● Expensive (considering the expansion to other 
countries)



The Alternatives
● Another Commercial Search Engine

● Building it from scratch ourselves

● Use existing open source search engine and modify it 
according our needs



What did we need
● Scalable solution

● Performance

● GEO locations

● Various ranking strategies

● Control of language specific items

● Knowledge continuation



Project Approach
● Identify technical risks

● Phase 1: Build the search engine

● Phase 2: Enhance the web site to support search 
engine

● Deployment

● Aftercare



Achievements
● Project delivered in time
● No drop in user visits during migration

● After 2 weeks, the system was stable (we suffered 
minor bugs and memory leaks)

● After 4 weeks of measurement the average time 
needed to execute a query dropped from 200ms 
to 35 ms



Bring Back to Community
● The eternal dilemma: 

● Bringing sources back would mean that we make our business 
plans public

● It certainly would be appreciated by our competitors

● Solution
● First only contribute generic improvements
● Later releases: contribute the 'previous release'



Conclusion
● Open Source made ilocal less depended and more 

competitive

● Lucene / Solr proved to be stable

● Huge performance improvement

● Improvements are easy to implement



● From Business Requirements

● To Technical Implementation



Challenges
● Complex ranking schemes

● Context aware

● Dynamic

● Configurable

● Geo-Location search
● Sort/Rank by distance + radius facets

● Multi-lingual support
● Fine grained tuning per language

● Context aware

● Performance!!!!



Overview
● (Very) Quick overview of Solr Architecture

● Ranking schemes

● Geo Location search

● Multi-lingual support

● Data Import handler

● Solr Multi-core

● Performance & Scalability

● Development process



Solr Architecture
● Schema

● Field Types

● Analyzers & Token Filters

● Request Handlers

● Search Components

● Query Parsers (Factories)

● Caching

Pluggable

Pluggable

Pluggable

Pluggable

Pluggable

Pluggable



Solr Architecture Overview



Ranking Schemes
● Introducing the SearchContext

● Ranking Scheme
● Uses DisMaxQParserPlugin
● Uses Function Queries

● IlocalRequestHandler
● Based on the StandardRequestHandler
● Resolves the appropriate search context for each request



Geo-Location Search
● Based on local-lucene & local-solr libraries

● LocalSolrSearchComponent
● Replaces the default search component

● Collects geo-location data while searching

– Longitude / Latitude

● Filters documents based on geo-location filters

– Radius list

● Sorts documents based on distances

● Utilizes multi-core processor (java 1.5 concurrency)



Multi-lingual Support
● It's all about field types

● A dedicated field type per language

– text_en, text_nl, etc..

● Use language specific analyzers

● The query language is part of the SearchContext

● After resolving the language, the appropriate search field is 
determined



Data Import Handler
● Provides out of the box data import functionality

● Databases

● HTTP (HTML/XML)

● File System

● Fairly flexible in terms of customization

● We did need to tweak it a bit to use JDBC DataSources

● Bottom line: in just a couple of days we had a full data 
import functionality ready.



Solr Multi-Core
● Used to manage multiple separate indexes

● In iLocal we used two
● Companies

● Locations

● Advantages:
● Smaller compact indexes perform better

● Finer control over index configuration

● Rebuilding each index separately

● Played a major role in our clustering solution



Performance
● Use caching where possible

● Solr pluggable caching mechanism

● Have fine control on what components are executed

● Don't be scared to write your own customized 
components

● Bottom line: Dropped average search time in about 
70%!!!

● The most complex query doesn't exceed 500ms



Scalability
● The update process

● Nightly feeds

● Complete rebuild of the index

● Solr 1.3 enables replication on the index itself
● No replication for configuration files

● Fixed in 1.4

● Stateless
● Ideal for load balancing

● Scale out by just adding machines



Scalability



Development Process
● Extended Solr Test Harness

● Using JMeter to load test

● Nightly build and deploy
● The source is checked out

● Solr is redeployed from scratch

● Data Import is triggered

● Tests are ran over the new instance

● Custom GWT based client for user acceptance tests

● Amazon EC2 for scalability tests



Conclusion
● Solr embraces customization

● Feature rich

● Fast! Fast! Fast!

● Ready for the enterprise
● Scalable

● Low cost!

● Solr & Lucene do the Job!



● Q & A


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

