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About ilocal
● Founded in 2004

● Goal: be the best website for finding companies 

● Currently 130 employees

● Surpassed established market players; number 
one website for local search in the Netherlands

● Expanding our business to other countries 
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How did we start
● We outsourced most of the software development

● A commercial search engine (known by the founder) 
was licensed

● Learning from users experience



Why Commercial Software
● Off the shelf (quick start)

● Proved to be successful

● Maintenance organization in place



The problems

● Our ideas became standard available in their products

● We learned faster than our supplier

● Time to market took too long

● Expensive (considering the expansion to other 
countries)



The Alternatives
● Another Commercial Search Engine

● Building it from scratch ourselves

● Use existing open source search engine and modify it 
according our needs



What did we need
● Scalable solution

● Performance

● GEO locations

● Various ranking strategies

● Control of language specific items

● Knowledge continuation



Project Approach
● Identify technical risks

● Phase 1: Build the search engine

● Phase 2: Enhance the web site to support search 
engine

● Deployment

● Aftercare



Achievements
● Project delivered in time
● No drop in user visits during migration

● After 2 weeks, the system was stable (we suffered 
minor bugs and memory leaks)

● After 4 weeks of measurement the average time 
needed to execute a query dropped from 200ms 
to 35 ms



Bring Back to Community
● The eternal dilemma: 

● Bringing sources back would mean that we make our business 
plans public

● It certainly would be appreciated by our competitors

● Solution
● First only contribute generic improvements
● Later releases: contribute the 'previous release'



Conclusion
● Open Source made ilocal less depended and more 

competitive

● Lucene / Solr proved to be stable

● Huge performance improvement

● Improvements are easy to implement



● From Business Requirements

● To Technical Implementation



Challenges
● Complex ranking schemes

● Context aware

● Dynamic

● Configurable

● Geo-Location search
● Sort/Rank by distance + radius facets

● Multi-lingual support
● Fine grained tuning per language

● Context aware

● Performance!!!!



Overview
● (Very) Quick overview of Solr Architecture

● Ranking schemes

● Geo Location search

● Multi-lingual support

● Data Import handler

● Solr Multi-core

● Performance & Scalability

● Development process



Solr Architecture
● Schema

● Field Types

● Analyzers & Token Filters

● Request Handlers

● Search Components

● Query Parsers (Factories)

● Caching

Pluggable

Pluggable

Pluggable

Pluggable

Pluggable

Pluggable



Solr Architecture Overview



Ranking Schemes
● Introducing the SearchContext

● Ranking Scheme
● Uses DisMaxQParserPlugin
● Uses Function Queries

● IlocalRequestHandler
● Based on the StandardRequestHandler
● Resolves the appropriate search context for each request



Geo-Location Search
● Based on local-lucene & local-solr libraries

● LocalSolrSearchComponent
● Replaces the default search component

● Collects geo-location data while searching

– Longitude / Latitude

● Filters documents based on geo-location filters

– Radius list

● Sorts documents based on distances

● Utilizes multi-core processor (java 1.5 concurrency)



Multi-lingual Support
● It's all about field types

● A dedicated field type per language

– text_en, text_nl, etc..

● Use language specific analyzers

● The query language is part of the SearchContext

● After resolving the language, the appropriate search field is 
determined



Data Import Handler
● Provides out of the box data import functionality

● Databases

● HTTP (HTML/XML)

● File System

● Fairly flexible in terms of customization

● We did need to tweak it a bit to use JDBC DataSources

● Bottom line: in just a couple of days we had a full data 
import functionality ready.



Solr Multi-Core
● Used to manage multiple separate indexes

● In iLocal we used two
● Companies

● Locations

● Advantages:
● Smaller compact indexes perform better

● Finer control over index configuration

● Rebuilding each index separately

● Played a major role in our clustering solution



Performance
● Use caching where possible

● Solr pluggable caching mechanism

● Have fine control on what components are executed

● Don't be scared to write your own customized 
components

● Bottom line: Dropped average search time in about 
70%!!!

● The most complex query doesn't exceed 500ms



Scalability
● The update process

● Nightly feeds

● Complete rebuild of the index

● Solr 1.3 enables replication on the index itself
● No replication for configuration files

● Fixed in 1.4

● Stateless
● Ideal for load balancing

● Scale out by just adding machines



Scalability



Development Process
● Extended Solr Test Harness

● Using JMeter to load test

● Nightly build and deploy
● The source is checked out

● Solr is redeployed from scratch

● Data Import is triggered

● Tests are ran over the new instance

● Custom GWT based client for user acceptance tests

● Amazon EC2 for scalability tests



Conclusion
● Solr embraces customization

● Feature rich

● Fast! Fast! Fast!

● Ready for the enterprise
● Scalable

● Low cost!

● Solr & Lucene do the Job!



● Q & A
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