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Who is Filip

• Apache Tomcat committer

• ASF Member

• Part of the servlet expert group

• SpringSource Inc employee
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What we will cover
• Introduction to AJAX and Comet

– AJAX yesterday, today and tomorrow
– Polling methods
– Client support

• The Bayeux Protocol
– Introduction to JSON
– Publish/Subscribe
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What we will cover
• The Bayeux Protocol

– Message exchange

• Bayeux clients
– Server side 
– Client side/browser
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What we will cover
• Tomcat Bayeux API

– Server side framework for bayeux web 
applications

• Implementing a simple app

• What now, buzz or bull?
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Introduction to AJAX
• What is AJAX

– Asynchronous Javascript and XML
– Web development technique
– Term coined in 2005
– Technique originated from Microsoft 

• 1996 iframe
• 1999 XMLHttpRequest object
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Introduction to AJAX
• AJAX on the client side

– Javascript running in browser
– Making HTTP requests in the background
– Ability to update without refresh
– Must be tailored to the browser
– Lots of frameworks out there
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Introduction to AJAX
• AJAX Today

– Has become a common solution
– Used by more and more large sites

• AJAX on the server side
– Scalability has been an issue
– Polling is expensive
– Works best when server can do 

asynchronous processing
– Tomcat Comet is such asynchronous 

engine
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Introduction to AJAX
• Polling and how it works
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Introduction to AJAX
• Client support

– Various Javascript frameworks 
– Communication with browser is still 

achieved with

BIG TIME HACKS!!!
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The Bayeux Protocol
• Publish Subscribe Model

– A JSON based publish/subscribe 
protocol

– Development lead by Dojo Foundation
– Approach is similar to JMS topics
– Still in somewhat of a trial stage
– Idea is to have someone else take over 

the specification
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The Bayeux Protocol
• Publish Subscribe Model

– Client and Server side frameworks
– Remove complexity of cometd/ajax from 

web developers
– Instead of pub/sub, one can think of it as 

listening for events
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The Bayeux Protocol
• Introduction to JSON

– JavaScript Object Notation
– Portable serialization format
– Not a markup language – no tags
– Fast serialization and deserialization
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The Bayeux Protocol
• Introduction to JSON

{ 
  "firstName": "John", 
  "lastName": "Smith", 
  "address": 
  { 
    "streetAddress": "21 2nd Street", 
    "city": "New York",
    "state": "NY",
    "postalCode": 10021 
  }, 
}
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The Bayeux Protocol
• Introduction to JSON

– JSON compared to XML?
• Long (and war like) debate
• JSON doesn’t have tags
• Much less verbose
• Parsing libraries much smaller and more 

efficient

– JSON is JavaScript! No parsing needed!
– XML with AJAX has been said to be 

slow.
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The Bayeux Protocol
• Introduction to JSON

– Cyclic references are supported in 
custom format

– http://www.sitepen.com/blog/2008/06/17
/json-referencing-in-dojo/
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The Bayeux Protocol
• Message exchanges

– All message exchange is done using 
JSON

– Very simple
• Establish client
• Subscribe to channel
• Publish events
• Receive events

– Two connection operation (optional)
• Allows send and receive at the same time
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The Bayeux Protocol
• Message exchanges

– Content type for messaging is
• text/json
• text/json-comment-filtered

– Comment filtered
• JSON message encapsulated in script 

comments /* … */
• Meant to prevent AJAX hi-jacking
• But it doesn't, so it has been deprecated.



Slide 19

The Bayeux Protocol
• Message exchanges

– Client establishment is done using 
handshake

[{
     "channel": "/meta/handshake", 
     "version": "1.0", 
     "minimumVersion": 
     "1.0beta", 
     "supportedConnectionTypes": 
         ["long-polling", 
          "callback-polling", 
          "iframe"] 
}]
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The Bayeux Protocol
• Message exchanges

– Client establishment is followed by a 
connect request

[{ 
    "channel": "/meta/connect", 
    "clientId": "Un1q31d3nt1f13r",    
    "connectionType": "long-polling" 
}]
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The Bayeux Protocol
• Message exchanges

– To disconnect, simply send disconnect 
message

– Server will also have some sort of 
timeout in case disconnect message is 
not received

• Similar to HTTP sessions 

[{ 
    "channel": "/meta/disconnect", 
    "clientId": "Un1q31d3nt1f13r",    
}]
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The Bayeux Protocol
• Message exchanges

– Channel subscription is easy

– Wild card patterns are supported

[ { 
      "channel": "/meta/subscribe", 
      "clientId": "Un1q31d3nt1f13r", 
      "subscription": "/foo/**" 
} ]
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The Bayeux Protocol
• Message exchanges

– Unsubscribing is equally

– Wild card patterns are supported

[ { 
      "channel": "/meta/unsubscribe", 
      "clientId": "Un1q31d3nt1f13r", 
      "subscription": "/foo/individual-
channel" 
} ]
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The Bayeux Protocol
• Message exchanges

– meta channels are used to negotiate  
between client and server

– The only other exchange is sending and 
receiving events (data)
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The Bayeux Protocol
• Message exchanges

– Unsubscribing is equally simple

– Wild card patterns are supported

[ { 
      "channel": "/meta/unsubscribe", 
      "clientId": "Un1q31d3nt1f13r", 
      "subscription": "/foo/some-channel" 
} ]
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The Bayeux Protocol
• Message exchanges

– Messages are simple key value pair 
objects

public interface Message 
    extends Map<String,Object>
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Bayeux actors
• Clients

– Server side and client side
– Subscribe to channel
– Publish and receive events from 

channels

• Browser side clients
– Only implementation is the Dojo Toolkit
– Have to handshake
– Supports different polling methods
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Bayeux actors
• Server side clients (Java)

– Implemented in several platforms
• Tomcat, Jetty, Glassfish

– All three use different server side API
– Dojo Foundation has been the hinder for 

a common Java API
• Lack of process around infrastructure
• Lack for process around community 

development
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Bayeux actors
• Server side clients (other)

– Effort has been put in place to add APIs 
in other languages

• Perl
• Python
• .NET
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Tomcat Bayeux API
• Server Side API
• Goal is to reduce complexity
• Derived from the original Dojo Java 

API
– Spaghetti references removed
– Redundant/ambiguous API removed
– More object oriented, instead of 

converting from string-to-object and 
object-to-string over and over again
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Tomcat Bayeux API
• API found at

• Implementation found at

• Built on top of Tomcat’s 
CometProcessor

org.apache.cometd.bayeux

org.apache.tomcat.bayeux
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Tomcat Bayeux API
• Configured through web.xml

<servlet>
  <servlet-name>cometd</servlet-name>
  <servlet-class>
    org.apache.tomcat.bayeux.BayeuxServlet
  </servlet-class>
  <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
  <servlet-name>cometd</servlet-name>
  <url-pattern>/cometd/*</url-pattern>
</servlet-mapping>
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Tomcat Bayeux API
• Create a client

– Callback is an implementation of the 
org.apache.cometd.bayeux.Listener
interface

Bayeux bayeux = ServletContext.getAttribute(
    “Bayeux.DOJOX_COMETD_BAYEUX”);

Client client = 
    bayex.newClient(“client-id”,callback);
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Tomcat Bayeux API
• Subscribe to a channel

Channel channel = 
    bayeux.getChannel("/chat/demo",true);

channel.subscribe(client);
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Tomcat Bayeux API
• Send a message

– Client is the “sender”

– Puts the message into the queue for all 
subscribed clients

Message msg = bayeux.newMessage(client);

channel.publish(msg);
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Tomcat Bayeux API
• Receive a message

– Messages can come in batches

– You can reply directly to a client

public void deliver(Message[] msgs){

Client sender = msgs[i].getClient();
Message reply = bayeux.newMessage(…);
sender.deliver(reply);



Tomcat Bayeux API
• Building Bayeux
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svn 
   co 
   http://svn.apache.org/repos/asf/tomcat/trunk  
   tctrunk

cd tctrunk



Tomcat Bayeux API
• Building Bayeux

– Tomcat has now been built, build the 
Bayeux extensions

– output/extras contains JARs and sample 
WAR
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ant download

ant

ant –f extras.xml bayeux



Tomcat Bayeux API
• Simple API
• Built using Tomcat’s CometProcessor

– Scalable
– No thread per connection limit
– Requires NIO or APR connectors
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Dojo ToolKit
• Using the Dojo Toolkit

– This is the URL of your Bayeux servlet
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dojo.require("dojox.cometd");

dojox.cometd.init("/cometd/cometd");



Dojo ToolKit
• Using the Dojo Toolkit

• We’ve subscribed to a channel and 
sent a message
– All complexity is behind the scenes
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dojox.cometd.subscribe("/chat/demo“,onMsgEvent);

var evt = 
 {'data': { 'msg': trim(message) + '|' + msg }};

dojox.cometd.publish("/chat/demo", evt.data);
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Buzz or Bull?
• A little bit of both
• Dojo lacks some of policy, process 

and infrastructure that ASF has
– Good at building user community
– Harder to build development community

• Client side still focuses on the AJAX 
hacks

• SPEC changes are fast without SVN 
notifications!!

•



Slide 43

Buzz or Bull?
• Once something like ‘WebSockets’ 

come in HTML/JavaScript
– We can probably expect to see more 

protocols and frameworks

• IMHO – Bayeux is still early, it 
provides some nice features
– But we lack more client frameworks
– And server API’s vary a lot
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And we’re done

• Thank you!

• Questions and hopefully Answers

• fhanik@apache.org
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