
Slide 1

What the Bayeux?

Filip Hanik
SpringSource Inc

Keystone, Colorado, 2008

Who is Filip

• Apache Tomcat committer

• ASF Member

• Part of the servlet expert group

• SpringSource Inc employee

Slide 3

What we will cover
• Introduction to AJAX and Comet

– AJAX yesterday, today and tomorrow
– Polling methods
– Client support

• The Bayeux Protocol
– Introduction to JSON
– Publish/Subscribe

Slide 4

What we will cover
• The Bayeux Protocol

– Message exchange

• Bayeux clients
– Server side
– Client side/browser

Slide 5

What we will cover
• Tomcat Bayeux API

– Server side framework for bayeux web
applications

• Implementing a simple app

• What now, buzz or bull?

Slide 6

Introduction to AJAX
• What is AJAX

– Asynchronous Javascript and XML
– Web development technique
– Term coined in 2005
– Technique originated from Microsoft

• 1996 iframe
• 1999 XMLHttpRequest object

Slide 7

Introduction to AJAX
• AJAX on the client side

– Javascript running in browser
– Making HTTP requests in the background
– Ability to update without refresh
– Must be tailored to the browser
– Lots of frameworks out there

Slide 8

Introduction to AJAX
• AJAX Today

– Has become a common solution
– Used by more and more large sites

• AJAX on the server side
– Scalability has been an issue
– Polling is expensive
– Works best when server can do

asynchronous processing
– Tomcat Comet is such asynchronous

engine

Slide 9

Introduction to AJAX
• Polling and how it works

Slide 10

Introduction to AJAX
• Client support

– Various Javascript frameworks
– Communication with browser is still

achieved with

BIG TIME HACKS!!!

Slide 11

The Bayeux Protocol
• Publish Subscribe Model

– A JSON based publish/subscribe
protocol

– Development lead by Dojo Foundation
– Approach is similar to JMS topics
– Still in somewhat of a trial stage
– Idea is to have someone else take over

the specification

Slide 12

The Bayeux Protocol
• Publish Subscribe Model

– Client and Server side frameworks
– Remove complexity of cometd/ajax from

web developers
– Instead of pub/sub, one can think of it as

listening for events

Slide 13

The Bayeux Protocol
• Introduction to JSON

– JavaScript Object Notation
– Portable serialization format
– Not a markup language – no tags
– Fast serialization and deserialization

Slide 14

The Bayeux Protocol
• Introduction to JSON

{
 "firstName": "John",
 "lastName": "Smith",
 "address":
 {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": 10021
 },
}

Slide 15

The Bayeux Protocol
• Introduction to JSON

– JSON compared to XML?
• Long (and war like) debate
• JSON doesn’t have tags
• Much less verbose
• Parsing libraries much smaller and more

efficient

– JSON is JavaScript! No parsing needed!
– XML with AJAX has been said to be

slow.

Slide 16

The Bayeux Protocol
• Introduction to JSON

– Cyclic references are supported in
custom format

– http://www.sitepen.com/blog/2008/06/17
/json-referencing-in-dojo/

Slide 17

The Bayeux Protocol
• Message exchanges

– All message exchange is done using
JSON

– Very simple
• Establish client
• Subscribe to channel
• Publish events
• Receive events

– Two connection operation (optional)
• Allows send and receive at the same time

Slide 18

The Bayeux Protocol
• Message exchanges

– Content type for messaging is
• text/json
• text/json-comment-filtered

– Comment filtered
• JSON message encapsulated in script

comments /* … */
• Meant to prevent AJAX hi-jacking
• But it doesn't, so it has been deprecated.

Slide 19

The Bayeux Protocol
• Message exchanges

– Client establishment is done using
handshake

[{
 "channel": "/meta/handshake",
 "version": "1.0",
 "minimumVersion":
 "1.0beta",
 "supportedConnectionTypes":
 ["long-polling",
 "callback-polling",
 "iframe"]
}]

Slide 20

The Bayeux Protocol
• Message exchanges

– Client establishment is followed by a
connect request

[{
 "channel": "/meta/connect",
 "clientId": "Un1q31d3nt1f13r",
 "connectionType": "long-polling"
}]

Slide 21

The Bayeux Protocol
• Message exchanges

– To disconnect, simply send disconnect
message

– Server will also have some sort of
timeout in case disconnect message is
not received

• Similar to HTTP sessions

[{
 "channel": "/meta/disconnect",
 "clientId": "Un1q31d3nt1f13r",
}]

Slide 22

The Bayeux Protocol
• Message exchanges

– Channel subscription is easy

– Wild card patterns are supported

[{
 "channel": "/meta/subscribe",
 "clientId": "Un1q31d3nt1f13r",
 "subscription": "/foo/**"
}]

Slide 23

The Bayeux Protocol
• Message exchanges

– Unsubscribing is equally

– Wild card patterns are supported

[{
 "channel": "/meta/unsubscribe",
 "clientId": "Un1q31d3nt1f13r",
 "subscription": "/foo/individual-
channel"
}]

Slide 24

The Bayeux Protocol
• Message exchanges

– meta channels are used to negotiate
between client and server

– The only other exchange is sending and
receiving events (data)

Slide 25

The Bayeux Protocol
• Message exchanges

– Unsubscribing is equally simple

– Wild card patterns are supported

[{
 "channel": "/meta/unsubscribe",
 "clientId": "Un1q31d3nt1f13r",
 "subscription": "/foo/some-channel"
}]

Slide 26

The Bayeux Protocol
• Message exchanges

– Messages are simple key value pair
objects

public interface Message
 extends Map<String,Object>

Slide 27

Bayeux actors
• Clients

– Server side and client side
– Subscribe to channel
– Publish and receive events from

channels

• Browser side clients
– Only implementation is the Dojo Toolkit
– Have to handshake
– Supports different polling methods

Slide 28

Bayeux actors
• Server side clients (Java)

– Implemented in several platforms
• Tomcat, Jetty, Glassfish

– All three use different server side API
– Dojo Foundation has been the hinder for

a common Java API
• Lack of process around infrastructure
• Lack for process around community

development

Slide 29

Bayeux actors
• Server side clients (other)

– Effort has been put in place to add APIs
in other languages

• Perl
• Python
• .NET

Slide 30

Tomcat Bayeux API
• Server Side API
• Goal is to reduce complexity
• Derived from the original Dojo Java

API
– Spaghetti references removed
– Redundant/ambiguous API removed
– More object oriented, instead of

converting from string-to-object and
object-to-string over and over again

Slide 31

Tomcat Bayeux API
• API found at

• Implementation found at

• Built on top of Tomcat’s
CometProcessor

org.apache.cometd.bayeux

org.apache.tomcat.bayeux

Slide 32

Tomcat Bayeux API
• Configured through web.xml

<servlet>
 <servlet-name>cometd</servlet-name>
 <servlet-class>
 org.apache.tomcat.bayeux.BayeuxServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>cometd</servlet-name>
 <url-pattern>/cometd/*</url-pattern>
</servlet-mapping>

Slide 33

Tomcat Bayeux API
• Create a client

– Callback is an implementation of the
org.apache.cometd.bayeux.Listener
interface

Bayeux bayeux = ServletContext.getAttribute(
 “Bayeux.DOJOX_COMETD_BAYEUX”);

Client client =
 bayex.newClient(“client-id”,callback);

Slide 34

Tomcat Bayeux API
• Subscribe to a channel

Channel channel =
 bayeux.getChannel("/chat/demo",true);

channel.subscribe(client);

Slide 35

Tomcat Bayeux API
• Send a message

– Client is the “sender”

– Puts the message into the queue for all
subscribed clients

Message msg = bayeux.newMessage(client);

channel.publish(msg);

Slide 36

Tomcat Bayeux API
• Receive a message

– Messages can come in batches

– You can reply directly to a client

public void deliver(Message[] msgs){

Client sender = msgs[i].getClient();
Message reply = bayeux.newMessage(…);
sender.deliver(reply);

Tomcat Bayeux API
• Building Bayeux

Slide 37

svn
 co
 http://svn.apache.org/repos/asf/tomcat/trunk
 tctrunk

cd tctrunk

Tomcat Bayeux API
• Building Bayeux

– Tomcat has now been built, build the
Bayeux extensions

– output/extras contains JARs and sample
WAR

Slide 38

ant download

ant

ant –f extras.xml bayeux

Tomcat Bayeux API
• Simple API
• Built using Tomcat’s CometProcessor

– Scalable
– No thread per connection limit
– Requires NIO or APR connectors

Slide 39

Dojo ToolKit
• Using the Dojo Toolkit

– This is the URL of your Bayeux servlet

Slide 40

dojo.require("dojox.cometd");

dojox.cometd.init("/cometd/cometd");

Dojo ToolKit
• Using the Dojo Toolkit

• We’ve subscribed to a channel and
sent a message
– All complexity is behind the scenes

Slide 41

dojox.cometd.subscribe("/chat/demo“,onMsgEvent);

var evt =
 {'data': { 'msg': trim(message) + '|' + msg }};

dojox.cometd.publish("/chat/demo", evt.data);

Slide 42

Buzz or Bull?
• A little bit of both
• Dojo lacks some of policy, process

and infrastructure that ASF has
– Good at building user community
– Harder to build development community

• Client side still focuses on the AJAX
hacks

• SPEC changes are fast without SVN
notifications!!

•

Slide 43

Buzz or Bull?
• Once something like ‘WebSockets’

come in HTML/JavaScript
– We can probably expect to see more

protocols and frameworks

• IMHO – Bayeux is still early, it
provides some nice features
– But we lack more client frameworks
– And server API’s vary a lot

Slide 44

And we’re done

• Thank you!

• Questions and hopefully Answers

• fhanik@apache.org

	What the Bayeux?
	Slide 2
	What we will cover
	Slide 4
	Slide 5
	Introduction to AJAX
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	The Bayeux Protocol
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Bayeux actors
	Slide 28
	Slide 29
	Tomcat Bayeux API
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Dojo ToolKit
	Slide 41
	Buzz or Bull?
	Slide 43
	And we’re done

