
Introduction to NIO.2
(Asynchronous I/O) and
how you can benefit from
being asynchronous!

Jeanfrancois Arcand
Senior Staff Engineer
Sun Microsystems

Goal

This session will introduce NIO.2 API and
Concepts and demonstrate how Apache
Projects like Tomcat can take advantage
of the new API, both in term of code
clarity and performance.

Agenda
• Introduction to Asynchronous I/O
• The Frightening Thread Pool
• Bye Bye Selector!
• The Evil AsynchronousSocketChannel.read()
• The Mysterious AsynchronousSocketChannel.write()
• Damned ByteBuffer
• New File I/O (finally)
• I’m Watching You - WatchService
• Conclusion

•  NIO.1 -> Get events through a Selector when there is some I/O
ready to be processed, like read and write operations. As soon as
you get notified that an event is ready to be processed, execute
an operation:

If (key.isReadable(){
 channel.read(byteBuffer);
}

•  Asynchronous I/O send you a notification when the I/O is
completed. You get the notification ONLY when the operation has
completed (or failed).

Introduction to AIO

•  With AIO, you wait for I/O operations using we a
CompletionHandler:
–  completed(...): invoked when the I/O operation completes

successfully.
–  failed(...): invoked if the I/O operations fails (like when the

remote client close the connection).
–  cancelled(...): invoked when the I/O operation is cancelled by

invoking the cancel method on a Future.
•  As an example, you specify a completion handler when you want

to execute an asynchronous read.

5

CompletionHandler

•  Almost all I/O operations returns a Future which can
be used to monitor the I/O transaction and be used to
block for the I/O transaction to complete/times out.

Future f =
asynchronousSocketChannel.connect(…);

// Wait for the connect operation to complete.
f.get(30,TimeUnit.SECONDS);

Future

•  A grouping of asynchronous channels for the purpose
of resource sharing.

•  Encapsulates the mechanics required to handle the
completion of I/O operations initiated by
asynchronous channels that are bound to the group.

•  A group has an associated thread pool to which tasks
are submitted to handle I/O events and dispatch to
CompletionHandler that consume the result of
asynchronous operations

AsynchronousChannelGroup

•  In addition to handling I/O events, the pooled threads
may also execute other tasks required to support the
execution of asynchronous I/O operations.

AsynchronousChannelGroup

•  With AIO, you can configure the thread pool
(ExecutorService) used by both the AIO kernel
and your application

AsynchronousChannelGroup.withFixedThreadPool
 (nThread, ThreadFactory)
AsynchronousChannelGroup.withCachedThreadPool
 (ExecutorService, initialSize)
AsynchronousChannelGroup.withThreadPool(ExecutorService)

•  … or use the preconfigured/built in Thread Pool
that comes by default (no control)

9

The Frightening Thread Pool

•  An asynchronous channel group associated with a
fixed thread pool of size N creates N threads that are
waiting for already processed I/O events.

•  The kernel dispatch event directly to those threads:
• Thread first complete the I/O operation (like filling

a ByteBuffer during a read operation).
• Next invoke the CompletionHandler.completed()

that consumes the result.
• When the CompletionHandler terminates

normally then the thread returns to the thread
pool and wait on a next event.

FixedThreadPool

•  What about if all threads "dead lock" inside a
CompletionHandler?

•  Bang! your entire application can hangs until one thread
becomes free to execute again.

•  The kernel is no longer able to EXECUTE anything!

•  Hence this is critically important CompletionHandler complete
in a timely manner and avoid blocking.

•  If all completion handlers are blocked, any new event will be
queued until one thread is 'delivered' from the lock.

•  So try to avoid blocking operations inside a completion handler.

Booo my application freezes!

•  An asynchronous channel group associated with a
cached thread pool submits events to the thread pool
that simply invoke the user's completion handler.

•  Internal kernel's I/O operations are handled by one or
more internal threads that are not visible to the user
application.

•  That means you have one hidden thread pool that
dispatch events to a cached thread pool, which in turn
invokes completion handler

•  Wait! you just win a price: a thread's context switch for
free!!

12

CachedThreadPool

•  Probability of suffering the hangs problem as with the
FixedThreadPool is lower.

•  Still might grows infinitely (those infinite thread pool
should have never existed anyway!).

•  At least you guarantee that the kernel will be able to
complete its I/O operations (like reading bytes).

•  Oups…CachedThreadPool must support unbounded
queueing to works properly (grrr not sure I like that!!!).

•  So you can possibly lock all the threads and feed the
queue forever until OOM happens. Great!

•  Of course, nobody will ever do that!

CachedThreadPool

•  Hybrid of the above configurations:
•  Cached thread pool that creates threads on demand
•  N threads that dequeue events and dispatch directly to

CompletionHandler

•  N defaults to the number of hardware threads.

•  In addition to N threads, there is one additional internal thread that
dequeues events and submits tasks to the thread pool to invoke
completion handlers.

14

Build-in Kernel Thread Pool

Some code

AsynchronousChannelGroup:
org.apache.tomcat.util.net.AIOEndpoint

CompletionHandler
org.apache.tomcat.util.net.AIOEndpoint.SocketProcessor

AsynchronousServerSocketChannel
org.apache.tomcat.util.net.AIOEndpoint.Acceptor

Bye Bye Selector

•  With NIO.1, the torture started with the
Selector and its associated classes:

•  SelectionKey for determining I/O operations
•  Socket/DatagramChannel for I/O operations
•  Selector waked up when some I/O
operations were ready to be executed
•  If OP_ACCEPT else IF OP_READ else IF
OP_WRITE else IF OP_CONNECT

The nightmare is over

•  Hence in order to perform any I/O operation,
you needed to register your SelectionKey to one
or more Selector, and wait to get notified once
“ready”
•  With AIO, no more Selector/SelectionKey. You
just use the real objects:

•  AsynchrounousServerSocketChannel.accept(…)
•  AsynchronousSocketChannel.write (…)

Ex: Accepting connection
 asyncSocketServer.accept(null,
 new CompletionHandler<AsynchronousSocketChannel,
Void>(){
 public void completed(AsynchronousSocketChannel a, Void v) {
 processConnection(a);
 asyncSocketServer.accept(null,this);
 }
 // Client disconnected
 public void failed(Throwable t, Void v) {}
 // Future.cancel()
 public void cancelled(Void v) {
 }
 });

•  Once a connection has been accepted, it is now time to
read some bytes:

AsynchronousSocketChannel.read(ByteBuffer b,
 Attachment a,
 CompletionHandler c);
Hey Hey  You see the evil, right?
Who remember when I was scared by the

SelectionKey.attach()?

The evil AsynchronousSocketChannel.read()

•  Trouble trouble trouble:
•  Let’s say you get 10 000 accepted connections
•  Hence 10 000 ByteBuffer created, and the read

operations get invoked
•  Now we are waiting, waiting, waiting, waiting for the

remote client(s) to send us bytes (slow clients/
network)

•  Another 10 000 requests comes in, and we are again
creating 10 000 ByteBuffer and invoke the read()
operations.

•  BOOM OOM!

20

The evil AsynchronousSocketChannel.read()

•  Let’s not be too negative here. So far we have tested
with more than 20 000 clients without any issues

•  But this is still something you have to keep in mind!!
•  Might want to throttle the read() operation to avoid

the creation of too many ByteBuffer
•  I strongly recommend the use of a ByteBuffer pool,

specially if you are using Heap ByteBuffer (more on
this later). Get a ByteBuffer before invoking the
read() method, and return it to the pool once the read
operations complete.

21

The evil AsynchronousSocketChannel.read()

•  Hein? Blocking? Not like NIO.1 PLEASE!!
•  When invoking the read operation, the returned value

is a Future:
Future readOp =

AsynchronousSocketChannel.read(…);
readOp.get(30, TimeUnit.SECONDS);

•  The Thread will blocks until the read operation
complete or times out.

•  Be careful as you might lock your ThreadPool
(specially the fixedThreadPool)

Blocking AsynchronousSocketChannel.read()

Some code
AsynchronousSocketChannel.read()

org.apache.tomcat.util.net.AIOEndpoint.SocketProcessor

Blocking read()
org.apache.coyote.http11.InternalAioInputBuffer

•  Now let’s execute some write operations:
AsynchronousSocketChannel.write(ByteBuffer b,
 Attachement a,
 CompletionHandler c);

•  Wait wait wait. Since we are asynchronous, invoking
write(..) will not block, so the calling thread can
continue its execution.

•  What’s happen when the calling thread invokes the
write method again and the CompletionHandler has not
yet been invoked by the previous write call?

24

The mysterious AsynchronousSocketChannel.write()

•  Aille!! You get a WritePendingException
•  Hence when invoking the write operation, make sure

the CompletionHandler.complete() has been invoked
before initiating another write.

•  Better, store ByteBuffer inside a queue and execute
write operations only when the previous one has
completed (will show code soon)

•  As for read, I strongly recommend the use of a
ByteBuffer pool for executing write operations. Get
one before writing, put it back to the pool after.

25

The mysterious AsynchronousSocketChannel.write()

Some code

AsynchronousSocketChannel.write()
com.sun.grizzly.aio.OutputWriter

Blocking write()
com.sun.grizzly.aio.OutputWriter

Damned ByteBuffer!
•  If you are using Heap ByteBuffer, be aware the

kernel will copy the bytes into a direct ByteBuffer
during every write operation:

• Free byte copy 

•  Direct ByteBuffer performance have significantly
improved with JDK 7, so use them directly.

•  Scattered ByteBuffer write operations still offer you
free copy, using direct ByteBuffer or not!

•  Before, the nightmare:

File f = new File();

FileOutputStream fis = new FileOutputStream(f);

FileChannel fc = fis.getChannel();

fc.write(…);

…… typing so much lines hurts 

Now let’s execute some write operations:

AsynchronousFileChannel.open(Path file, Set<? extends OpenOption> options,
ExecutorService executor, FileAttribute<?>... attrs);

afc.write(…);

28

The cool AsynchronousFileChannel.open()

New File I/O system API

29

•  New packages

•  java.nio.file, java.nio.file.attribute

•  Main classes:

•  FileSystem:

•  Interface to file system

•  Factory for objects to access files and other objects in file system

•  FileRef

•  Reference to file or directory

•  Defines methods to operate on file or directory

•  Path

•  A FileRef that locates a file by a system dependent path

•  Created by FileSystem by converting path string or URI

•  FileStore

•  Underlying storage pool, device, partition...

I’m watching you - WatchService!

30

•  A watch service that watches registered objects for changes and
events.

•  A Watchable object is registered with a watch service by invoking its
register method, returning a WatchKey (oh no a SelectionKey cousin ;-))
to represent the registration.

•  Grrr -> The implementation that observes events from the file system is
intended to map directly on to the native file event notification facility
where available, or to use a primitive mechanism, such as polling,
when a native facility is not available.

•  Consequently, many of the details on how events are detected, their
timeliness, and whether their ordering is preserved are highly
implementation specific.

Conclusion
Asynchronous I/O significantly improve the
way scalable I/O based application can be
constructed.

Use AIO NOW by downloading JDK 7
(starting @ build 50)

Tomcat AIO implementation soon available
(Grizzly already available…)

Q&A
•  Open JDK NIO.2 page:
 http://openjdk.java.net/projects/nio/
•  My Tricks and Tips series on AIO
 http://weblogs.java.net/jfarcand
•  AIO docs
 http://openjdk.java.net/projects/nio/javadoc/
•  http://twitter.com/jfarcand

