
J2EE 1.4 Web Services Tom McQueeney

1

ApacheCon EU 2005

Open Standards / Open Source
Java Web Services with Apache

Geronimo

By
Tom McQueeney

J2EE 1.4 Web Services Tom McQueeney

2

What this tutorial covers: Part I lecture (1 hour)

Web services background
Introduce J2EE 1.4 web services
Writing J2EE 1.4 web services ("endpoints")
Simple example of a J2EE web service
Deploying web services to a J2EE 1.4 container
Techniques for writing web service client applications
Tips for writing interoperable web services
Future of J2EE web services (JSR 181, JSR 224)
With J2EE 5 on the horizon, why learn J2EE 1.4?

J2EE 1.4 Web Services Tom McQueeney

3

What this tutorial covers: Part II lab (2 hours)

Writing a more realistic Java web service
WSDL
Web service deployment descriptors
JAX-RPC mapping files
Using XDoclet to generate web service artifacts
Using Spring when coding web services
Sun's Java Web Services Developer Pack
Where auto-generation falls short
How Geronimo implements web services
Advanced topics as time permits: stateful web services,
handlers, holders, security

J2EE 1.4 Web Services Tom McQueeney

4

Web services background information (1 of 2)

Web services started as a concept circa 1997 defining an
exchange of XML service requests/responses (often
procedure/method calls) between two systems over the
web (http)
Motivation and purpose for WS much like CORBA – allow
different system written in different languages to call each
other's services remotely over the network – except WS
standards are being widely adopted
Advantages of web services:

Language neutral
Platform neutral
Better firewall traversal (than CORBA, DCOM, RMI)
Flexibility: Exchanged messages described as XML

J2EE 1.4 Web Services Tom McQueeney

5

Web services background information (2 of 2)

SOAP 1.1 and WSDL 1.1, which became W3C "standards"
in 2001, help tighten the definition by defining message
formats and communication protocols. Web service today
often means an implementation of a service interface
defined in a WSDL document
WS-I "profiles" narrows definition even further to promote
interoperability
OASIS adding higher-level specifications for WS, like
security (SAML), business processes (ebXML)

J2EE 1.4 Web Services Tom McQueeney

6

Introduction to J2EE 1.4 web services (1 of 2)

Adding web services to J2EE delayed 1.4 spec for several months
Goals of J2EE 1.4 web services:

Interoperability: Non-Java clients can call J2EE web services and
J2EE components can call non-Java web services
Portable code: Can develop a web-service and deploy it to any
J2EE server
Simplify: Hide details of SOAP, WSDL, HTTP, etc., from the
developer

Specs add a new J2EE component type (JSE) and augment EJB 2.1
specification to expose SLSBs as a web service endpoint
Defines client programming model to interact with web services. Web
service clients can live inside or outside the J2EE container
Defined using SOAP 1.1 and WSDL 1.1 (and UDDI)

J2EE 1.4 Web Services Tom McQueeney

7

Introduction to J2EE 1.4 web services (2 of 2)

Interoperability: Complies with WS-I Basic Profile 1.0
Requires support for JAX-RPC 1.1, which defines:

How WSDL maps to Java interfaces, and vice versa
How incoming SOAP (XML) messages are converted
(unmarshalled) to Java data types, and vice versa (does
not use JAXB)
How WSDL "out" and "inout" parameters are handled

J2EE 1.4 Web Services Tom McQueeney

8

Writing J2EE 1.4 web services ("endpoints")

You – or deployment tool – must supply a WSDL document
describing your web service. WSDL must be deployed as
part of component
Two J2EE components can implement a web service:

JSE (JAX-RPC Service Endpoint): Can look like a servlet.
Acts like a servlet. Runs in web container like a servlet.
Isn't a servlet (but is called by one)
SLSB: Exposed as web service via deployment
descriptors

Both are coded as remote objects, and implement the
java.rmi.Remote interface
Which to use?

JSE is easier because it's (mostly) just a POJO

J2EE 1.4 Web Services Tom McQueeney

9

Writing J2EE 1.4 web services ("endpoints")

Might prefer using a stateless session EJB if:
You already have a SLSB you want to expose as a web service
You need the services of EJB, like declarative transaction
management or role-based security, in your implementation
But: The SOAP client calling the EJB web service cannot participate in
the transaction (at least the spec does not define it)
Your EJB method transaction attributes probably will be Requires or
RequiresNew. Mandatory is illegal in EJB endpoints. Can you figure
out why?

Because SOAP client can’t propagate its transaction
If you use Supports, Never or NotSupported, ask yourself, “Why am I
using EJB?”

J2EE 1.4 Web Services Tom McQueeney

10

JSE: JAX-RPC Service Endpoints (1 of 3)
JSEs share similarities to servlets:

Instances run in the web container
Container invokes JSE methods in response to incoming requests
Instances follow servlet-like lifecycle
Must have a public, no-arg constructor
Uses web.xml as base deployment descriptor (hack for simplicity)
Can be deployed with servlets (and other JSEs) in a WAR file
May be called from multiple threads at one time. Practice safe
threading – Don't save client state in instance vars
Can use servlet filters in web.xml to pre- and post-process raw HTTP
request/response

If you want, you can even code your JSE similar to a servlet
implement javax.xml.rpc.server.ServiceLifecycle interface:
Provides init() and destroy() lifecycle methods
init() is passed a JSE context object, which provides access to servlet
container services (ServletContext, HTTPSession, security Principal)

J2EE 1.4 Web Services Tom McQueeney

11

JSE: JAX-RPC Service Endpoints (2 of 3)

Un-servlet-like features and deployment requirements:
JSE can have SOAP "handlers" to process the SOAP
request/response. Handlers are like servlet filters, except they see
SOAP messages
Adds required webservices.xml deployment descriptor in WEB-INF
to describe web service
Adds required "jaxrpc-mapping.xml" deployment descriptor under
WEB-INF
Requires a WSDL document under WEB-INF that describes the web
service

JSE must be coded as a Java remote object. i.e. YOU MUST…

Write/supply a remote interface the JSE implements, called a
service endpoint interface. (SEI can be auto-generated via XDoclet
or J2EE vendor tools)
SEI must extend marker interface java.rmi.Remote
SEI methods must be declared to throw
java.rmi.RemoteException

J2EE 1.4 Web Services Tom McQueeney

12

JSE: JAX-RPC Service Endpoints (3 of 3)

BUT! JSE itself can be coded to look like any other Java
class

It must implement or extend no J2EE component
Web container treats your JSE as a remote object, but you
don't have to
I.e. your JSE methods don't have to throw RemoteException

J2EE 1.4 Web Services Tom McQueeney

13

EJB Service Endpoints

J2EE 1.4 spec changes ejb-jar.xml deployment
descriptor to allow SLSB to be defined as a web service
Like JSE, adds requirements to SLSB deployment:

Requires webservices.xml deployment descriptor to
describe web service endpoint
Requires "jaxrpc-mapping.xml" deployment
descriptor
Requires WSDL file to be deployed with EJB
All above goes in/under the META-INF directory of your
EJB jar file

J2EE 1.4 Web Services Tom McQueeney

14

How J2EE servers implement endpoints

EJB Container
SLSB Service Impl

JAX-
RPC

SAAJ

Soap

Adapter
SOAP/

HTTP(S)

Java Application Server

Servlet Container

JAVA CLASS Service Impl

J2EE 1.4 Web Services Tom McQueeney

15

Code example: Steps to writing a JSE

1. Write remote interface (the service endpoint interface)
2. Write class that implements the interface
3. Write (generate) WSDL document that describes the web service

(vendor tool)
4. Write (or generate) deployment descriptors:

1. web.xml defines the services and the URL mappings to them
2. webservices.xml ties J2EE components to "port" definitions in the

WSDL
3. jaxrpc-mapping.xml maps WSDL portType, message and

operations to Java classes, methods and parameter types
4. Application-server specific deployment descriptors, if needed

5. Create WAR file

J2EE 1.4 Web Services Tom McQueeney

16

Demo: Write and deploy JSE and EJB web services

Demo shows how to write web services as a JSE (JAX-RPC Service
Endpoint) and as an EJB
We will use Apache Geronimo as our J2EE container

Step 5
Create War File

Step 4
Deployment
Descriptors

Step 3
WSDL

Document

Step 2
Write

Web Service Class
Implement Interface

Step 1

Write
Remote Interface

Write a JSE

J2EE 1.4 Web Services Tom McQueeney

17

Step 1: Write remote interface (SEI)

package com.mcqueeney.service;
import java.rmi.Remote;
import java.rmi.RemoteException;

/**
* This is the Service Endpoint

Interface for the TimeService
web service.

* It serves as a remote interface in
the JAX-RPC world.

*/
public interface TimeService extends

Remote {

public String getTimeAsString()
throws RemoteException;

}

Step 5

Step 4

Step 3

Step 2

Step 1

package com.geronimolive.service;
import java.rmi.Remote;
import java.rmi.RemoteException;

/**
* This is the Service Endpoint Interface for the TimeService web service.
* It serves as a remote interface in the JAX-RPC world.

*/
public interface TimeService extends Remote {

/**
* Returns the current time and date as a string.
* @return the current time and date as a string.
* @throws RemoteException if any problem occurs.
*/

public String getTimeAsString() throws RemoteException;
}

J2EE 1.4 Web Services Tom McQueeney

18

Step 2: Write web service implementation class

package com.geronimolive.service;
import java.util.Date;

/**
* This time service provides clients with

the current date and time.
*/
public class TimeServiceImpl implements

TimeService {
/**
* Returns the current time and date
as a string.
*/

public String getTimeAsString() {
String time = new Date().toString();
return time;

}
}

Step 5

Step 4

Step 3

Step 2

Step 1

J2EE 1.4 Web Services Tom McQueeney

19

Step 2: Write web service implementation class

package com.mcqueeney.service;
import java.util.Date;

/**
* This time service provides clients with

the current date and time.
*/
public class TimeServiceImpl implements

TimeService {
/**
* Return the current time and date as
a string.
*/

public String getTimeAsString() {
String time = new Date().toString();
return time;

}
}

Step 5

Step 4

Step 3

Step 2

Step 1

package com.geronimolive.service;
import java.util.Date;

/**
* This time service provides clients with the current date and time.

*/
public class TimeServiceImpl implements TimeService {

/**
* Return the current time and date as a string.
*/
public String getTimeAsString() {

String time = new Date().toString();
return time;

}
}

J2EE 1.4 Web Services Tom McQueeney

20

Step 3: Generate WSDL
<axis-java2wsdl

output="${generated.wsdl}/TimeService.wsdl"
classname="com.geronimolive.service.TimeService"
namespace="http://service.geronimolive.com"
style="rpc"
use="literal“
location="http://${axis.server}:${axis.port}

>
<classpath refid="axis.class.path" />

</axis-java2wsdl>

We’ll use an open source
tool, Apache Axis, to

generate the WSDL from
the interface class.

Step 5

Step 4

Step 3

Step 2

Step 1

J2EE 1.4 Web Services Tom McQueeney

21

Step 3: Generate WSDL

We’ll use our vendor tool, Apache Axis, to generate the
WSDL from the interface class. Ant task (abridged):

<axis-java2wsdl
output="${generated.wsdl}/TimeService.wsdl"
classname="com.geronimolive.service.TimeService"
namespace="http://service.geronimolive.com"
style="rpc"
use="literal”

location="http://${axis.server}:${axis.port}/${axis.servletpath}/
webservices/TimeService"
>

<classpath refid="axis.class.path" />
</axis-java2wsdl>

J2EE 1.4 Web Services Tom McQueeney

22

Step 4: Write/generate deployment descriptors

<web-app xmlns="…" xmlns:xsi="…"
xsi:schemaLocation="…"
version="2.4"

>
<servlet>

<servlet-name>
TimeService
</servlet-name>
<servlet-class>

com.geronimolive.service.TimeServiceImpl

</servlet-class>
</servlet>
<servlet-mapping>

<servlet-name>
TimeService
</servlet-name>
<url-pattern>/TimeService</url-

pattern>
</servlet-mapping>

</web-app>

Step 5

Step 4

Step 3

Step 2

Step 1

web.xml
(we'll generate it)

J2EE 1.4 Web Services Tom McQueeney

23

Step 4: Write/generate deployment descriptors (1 of 2)

web.xml (generated)

<web-app xmlns="…" xmlns:xsi="…" xsi:schemaLocation="…"
version="2.4"

>
<servlet>

<servlet-name>TimeService</servlet-name>
<servlet-class>
com.geronimolive.service.TimeServiceImpl
</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>TimeService</servlet-name>
<url-pattern>/TimeService</url-pattern>

</servlet-mapping>
</web-app>

J2EE 1.4 Web Services Tom McQueeney

24

Step 4: Write/generate deployment descriptors (2 of 2)

geronimo-jetty.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app

xmlns="http://geronimo.apache.org/xml/ns/web/jetty"
configId="com/geronimolive/gcal"
parentId="org/apache/geronimo/Server"

>
<context-root>/TimeService</context-root>
<context-priority-classloader>false</context-priority-classloader>

</web-app>

webservices.xml (hand-code)
jaxrpc-mapping.xml (hand-code)

J2EE 1.4 Web Services Tom McQueeney

25

Step 5: Build WAR file

Build the WAR file containing the JSE
Deploy it to Geronimo

DEMO
Step 5

Step 4

Step 3

Step 2

Step 1

J2EE 1.4 Web Services Tom McQueeney

26

Five Steps Completed

That’s the basic 5-step process for writing a JSE

Step 5
Create War File

Step 4
Deployment
Descriptors

Step 3
WSDL

Document

Step 2
Write

Web Service Class
Implement Interface

Step 1
Write

Remote Interface

Write a JSE

J2EE 1.4 Web Services Tom McQueeney

27

Writing web service clients

Client model is defined by JAX-RPC 1.1 spec.
You can write web service clients using three JAX-RPC techniques:

JAX-RPC
Techniques

Generated Stub Dynamic Proxy Dynamic Invocation
Interface (DII)

Easiest
JAX-RPC is invisible to
your code. Stub classes
hide it.

Most Portable
Your code asks JAX-RPC
factory to create stub at
runtime that implements
SEI.

No Stub Necessary
Your code uses JAX-RPC
directly to invoke the web
service, register
serializers/deserializers,
etc

Easy Coding -------------------------->More Complicated to Code

J2EE 1.4 Web Services Tom McQueeney

28

Writing web service clients (2 of 5)Generated Stub

Generated Stub
Use this approach if
have WSDL at coding
time and can use a
vendor tool to create
stub classes.

Considerations
Diagram: From "Designing Web Services with the J2EE 1.4 Platform"

Vendor tools produce
vendor-specific
implementations of the JAX-
RPC classes

Runtime will require that

Your code is directly coupled to SEI and
a service-locator helper class (service
locator then uses/instantiates other stub
classes)

Usually this isn't a problem
vendor's JAR file(s). E.g.
Apache Axis's jaxrpc.jar

J2EE 1.4 Web Services Tom McQueeney

29

Writing web service clients (3 of 5)

Dynamic Proxy
When it is important your
code is not coupled to any
one vendor's JAX-RPC
implementation, use this
approach.

Considerations
Slightly more complicated to
code. Your client speaks a little
JAX-RPC
But your code is directly
coupled only to SEI
Your code uses standard JAX-
RPC classes to create proxy at
runtime that implements the
SEI

From "Designing Web Services with the J2EE 1.4 Platform"

Dynamic Proxy

Additional runtime
overhead

J2EE 1.4 Web Services Tom McQueeney

30

Writing web service clients (4 of 5)
Dynamic Invocation

Interface (DII)

Dynamic invocation
interface (DII)
Use this approach if your
client doesn't know
anything about the web
service at development
time (e.g. no WSDL)

Considerations

From "Designing Web Services with the J2EE 1.4 Platform"

Useful for tools, i.e. dynamically retrieve
WSDL then show user on a GUI what
services are available and allow user to
select what should be called

Your client needs to set the web
service's URL, operation to invoke, its
required parameters and return values,
XML serializers/deserializers needed, etc.

Your client uses JAX-RPC
Call interface to invoke a
web service.

J2EE 1.4 Web Services Tom McQueeney

31

Writing web service clients

WS clients written to run inside a J2EE container vs.
outside differ only in how the web service interface is
looked up:

Inside-container clients use JNDI to look up a Service
object
Outside-container clients use a ServiceFactory class to
obtain a Service object.

Client API allows you to set standard client properties to:
set a user name and password for HTTP Basic
authentication, participate in a stateful session if the
remote service supports it

J2EE 1.4 Web Services Tom McQueeney

32

Code example: Writing an external WS client

Generate stub (and helper classes) and write client

J2EE 1.4 Web Services Tom McQueeney

33

Code example: Steps to writing an EJB endpoint

1. Write remote interface (the service endpoint interface)
2. Write SLSB that implements the interface's methods and

optionally implements the interface
3. Write (generate) WSDL document that describes the web

service (vendor tool)
4. Write (or generate) deployment descriptors:

1. ejb-jar.xml
2. webservices.xml and jaxrpc-mapping.xml
3. Application-server (Geronimo) specific deployment

descriptor
5. Create EJB-JAR file

J2EE 1.4 Web Services Tom McQueeney

34

Tips for writing interoperable web services (1 of 2)

Be aware that different web service platforms work differently
If you expect to have wide range of client applications calling your web
service, WS-I is your friend
WS-I, the Web Services Interoperability Organization, defines standards
for web services. Follow its web service specification "profiles"
Basic Profile 1.0 (Aug. 2003 but in draft since 2002) restricts how XML
Schema, SOAP, WSDL and UDDI may be used if you want your web
service to be callable from the largest set of platforms/languages
Avoid using rpc/encoded web services: WS-I BP 1.0 does not support
You can send complex data types (mapped to XML in jaxrpc-
mapping.xml), but for utmost interoperability, send only the data types
defined by XML Schema language:

string, int, integer, long, short, float, double, boolean, byte, date,
dateTime, base64Binary, …
Those all have equivalent Java types you can use as parameters or
return values: String, int, BigInteger, long, short, float, double,
boolean, byte, Calendar, byte[]

J2EE 1.4 Web Services Tom McQueeney

35

Tips for writing interoperable web services (2 of 2)

Use WS-I testing tools (available in Java and C#) to test your web
service for interoperability. Tests aren't fool-proof, but a good step to
find interop issues before customers do.
J2EE 1.4 complies with WS-I BP 1.0, but adds features not allowed by
BP 1.0:

RPC/Encoded SOAP messages
SOAP Messages with Attachments (W3C spec for MIME-encoded
attachments like images and audio) allowed by J2EE 1.4 but not
allowed by BP 1.0.

Note: SwA allowed by BP 1.1 (4-month old spec)

J2EE 1.4 Web Services Tom McQueeney

36

Future of J2EE web services

J2EE 5: JAX-RPC 2.0 (JSR-221) and Java annotations (JRS-181)
Goals of JAX-RPC 2.0:

Support WS-I BP 1.1 and Attachment Profile 1.0
Support SOAP 1.2 and WSDL 2.0
Make writing WS simpler by using metadata to annotate classes
and methods (JSR 181). No more SEI, webservices.xml, jaxrpc-
mapping.xml, and WSDL document. These can be generated from
metadata in the web services implementation
Remove requirement to define a remote object: No more
requirement to extend java.rmi.Remote and to throw
RemoteException
Compliant tools may produce J2EE 1.4 JAX-RPC artifacts so you
can use new features in a J2EE 1.4 app server running J2SE 5.0
Better support for document-centric web services
Integrate with JAXB to define Java-to-XML mappings instead of
defining own mapping mechanism
Web service versioning

J2EE 1.4 Web Services Tom McQueeney

37

Resources for more information (1 of 2)

Major J2EE 1.4 web services specs:
WSEE 1.1 / JSR 109 (Web Services for J2EE): jcp.org/en/jsr/detail?id=921

JAX-RPC 1.1 / JSR 101: jcp.org/en/jsr/detail?id=101

W3C (World Wide Web Consortium) web services standards
SOAP 1.1: http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

WSDL 1.1: http://www.w3.org/TR/wsdl

WS-I (Web Services Interoperability Organization)
Basic Profile 1.0, www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-
16.html

Interop Java testing tool: www.ws-
i.org/Testing/Tools/2004/01/WSI_Test_Java_01.00.01_bin.zip

J2ME clients calling web services
JSR 172, jcp.org/en/jsr/detail?id=172

J2EE 1.4 Web Services Tom McQueeney

38

Resources for more information (2 of 2)

Articles:
“Build interoperable Web services with JSR-109”
www-128.ibm.com/developerworks/webservices/library/ws-jsrart/

“Developer's introduction to JAX-RPC, Part 1: Learn the ins and outs of the
JAX-RPC type-mapping system”
www-106.ibm.com/developerworks/webservices/library/ws-jaxrpc1/

“… Part 2: Mine the JAX-RPC specification to improve Web service
interoperability”
www-106.ibm.com/developerworks/webservices/library/ws-jaxrpc2/

Books:
“J2EE Web Services” by Richard Monson-Haefel (Addison-
Wesley)
“Designing Web Services with the J2EE Platform” by
Inderjeet Singh et al. (Addison-Wesley):
java.sun.com/blueprints/guidelines/designing_webservices/html/index.html

J2EE 1.4 Web Services Tom McQueeney

39

Questions

Feel free to find me during the conference or email me:

tom@mcqueeney.com

	What this tutorial covers: Part I lecture (1 hour)
	What this tutorial covers: Part II lab (2 hours)
	Web services background information (1 of 2)
	Web services background information (2 of 2)
	Introduction to J2EE 1.4 web services (1 of 2)
	Introduction to J2EE 1.4 web services (2 of 2)
	Writing J2EE 1.4 web services ("endpoints")
	Writing J2EE 1.4 web services ("endpoints")
	JSE: JAX-RPC Service Endpoints (1 of 3)
	JSE: JAX-RPC Service Endpoints (2 of 3)
	JSE: JAX-RPC Service Endpoints (3 of 3)
	EJB Service Endpoints
	How J2EE servers implement endpoints
	Code example: Steps to writing a JSE
	Demo: Write and deploy JSE and EJB web services
	Step 1: Write remote interface (SEI)
	Step 2: Write web service implementation class
	Step 2: Write web service implementation class
	Step 3: Generate WSDL
	Step 3: Generate WSDL
	Step 4: Write/generate deployment descriptors
	Step 4: Write/generate deployment descriptors (1 of 2)
	Step 4: Write/generate deployment descriptors (2 of 2)
	Step 5: Build WAR file
	Five Steps Completed
	Writing web service clients
	Writing web service clients (2 of 5)
	Writing web service clients (3 of 5)
	Writing web service clients (4 of 5)
	Writing web service clients
	Code example: Writing an external WS client
	Code example: Steps to writing an EJB endpoint
	Tips for writing interoperable web services (1 of 2)
	Tips for writing interoperable web services (2 of 2)
	Future of J2EE web services
	Resources for more information (1 of 2)
	Resources for more information (2 of 2)
	Questions

