
1

The Shale Framework
http://shale.apache.org/

Craig McClanahan
Gary Van Matre

ApacheCon US 2006
Austin, TX

http://shale.apache.org/

2

AgendaAgenda

Background
JavaServer Faces and Other Frameworks
Tour of Shale Features
Shale and Struts
Current Status
Questions and Answers

3

BackgroundBackground

JavaServer Faces 1.0 released in March
2004:

Initial focus on getting the component APIs right
Hidden inside is a front controller
No time to address framework aspects well
So, provided extension points

Extension points can be used by:
Components – to provide specialized services
Frameworks – to provide additional functionality
Applications – to meet specific requirements

4

JSF and Other FrameworksJSF and Other Frameworks

JSF came into being in a world filled with
frameworks
Desire to leverage new and old capabilities together
Two fundamental approaches to integration:

Treat JSF as a view tier only
Treat JSF as a controller and a view tier

The first approach is available for several
frameworks now:

Spring
Struts
Beehive

And is easily added to others

5

JSF and Other FrameworksJSF and Other Frameworks

This first approach has overlapping sets of issues:
Resulting application architecture:

Typically a front controller “in front of” a front controller
JSF handles UI events, delegates form submit events

Overall architectural elegance:
Redundant functionality – conversion, validation, page
navigation, invoking actions
Impedance mismatches – expression language syntax,
lifecycle differences

Treating JSF as view tier only is recommended
primarily as a migration strategy, not as an
endgame

6

JSF and Other FrameworksJSF and Other Frameworks

Building a framework on top of JSF has
advantages:

Smaller – skip implementing redundant functionality
Easier to use – learn one approach to each need
Enables a focus on adding features and improving ease
of use

Started work on Shale in Fall 2005, focused on:
Adding ease of use APIs inspired by Java Studio Creator
Integrate functionality that existing Struts users expect:

Client side validation, Tiles layout management
Integrate new functionality enabled by JSF
(Later) Add a layer that leverages Java SE 5 annotations

7

JSF and Other FrameworksJSF and Other Frameworks

To date, I am aware of only one other framework
that is taking this approach – JBoss Seam:

Focused on tying JSF to JPA and EJB3
Also includes features for workflow orchestration
Submitted as the basis for JSR-299

But extensions capabilities are widely used:
Clay / Facelets – Alternative view representations
AJAX component libraries – inject phase listeners w/o
external configuration

Treating JSF as a controller and a view tier is the
recommended approach for new projects using JSF

8

JSF Extension PointsJSF Extension Points

VariableResolver – Customize evaluation of first
token in expressions
PropertyResolver – Customize evaluation of the “.”
operator in expressions
NavigationHandler – Customize navigation
decisions
ViewHandler – Customize view creation and
restoration
PhaseListener – Participate in (and modify) the
standard request processing lifecycle

9

Tour of Shale FeaturesTour of Shale Features

Key Functionality:
View Controller
Dialog Handler
Clay Plug-In
Tiger Extensions
Remoting

Other Features:
Application Controller
JNDI and Spring Integration
Unit Testing Framework
Struts Feature Integration (Validator, Tiles, Token)

10

View ControllerView Controller

A common pattern in JSF is backing bean per page
Must know the JSF request processing lifecycle to
understand where to inject some types of
application logic
Example – DB query needed to populate a table:

Only want to perform the query if it will actually be used
Skip it if the user navigated to a different page

Example – Need a transactional resource available
through rendering, but then need to clean up

Need to regain control after rendering is completed

11

View ControllerView Controller

Shale provides an optional interface for your
backing bean

Also use a naming convention for managed bean names
Implements the “Hollywood Principle”:

Don't call us, we'll call you
Four application oriented callbacks are provided:
init() -- called when view is created or restored
preprocess() -- called when about to process a postback
prerender() -- called when about to render this view
destroy() -- called after rendering, if init() was called

AbstractViewController – Convenience base class

12

View Controller – Example Use CaseView Controller – Example Use Case

Shale MailReader (With JPA) Example Application
Typical two-page master-detail CRUD scenario
Uses Java Persistence Architecture for database access

A Hibernate based application would look very similar
Will focus on JPA aspects in the next session

Usage of view controller callback methods:
init() -- Process optional request parameters
(bookmarkable URLs)
preprocess() -- Restore cached entity instance and mode
prerender() – Cache current entity instance and mode
destroy() -- No cleanup required

13

Dialog ManagerDialog Manager

Standard JSF navigation handler decides based on:
What view am I currently processing?
Which execute action method was invoked?
What logical outcome was returned by this action?

Issue – modelling of a “conversation” is ad hoc
Issue – how do we deal with conversational state?

Pass information in hidden fields
Can be unwieldy when numerous fields are required

Store information in session
Occupies memory if not cleaned up

14

Dialog ManagerDialog Manager

Dialog Manager deals with these issues:
Models conversations as an execution engine
Provides storage mechanism for conversational state
Heavily inspired by Spring Web Flow, but “JSF-ized”

Caution – Following functionality is currently in the
Shale sandbox,but will be imported to trunk soon
Application uses DialogContext abstraction

Maintain state (getData(), setData())
Execution: start(), stop(), and advance()
Parent dialog support (for popups)
Start dialogs programmatically or via navigation

15

Dialog ManagerDialog Manager

Two implementations to be included
Selected based on which JAR you include

“Basic” Implementation:
Compatible with historical dialog implementation
Models conversation as a simple state machine
Four state types: action, view, subdialog, exit
State transitions based on logical outcomes

“State Chart XML” implementation:
Advanced state machine based on:

http://www.w3.org/TR/scxml/
Conditionals, parallel execution, and more ...

http://www.w3.org/TR/scxml/

16

Dialog Manager – Example Use CaseDialog Manager – Example Use Case

“Use Cases” Demo Application logon dialog:
Log on with existing username and password
Create user profile and log on
Edit existing user profile
Optionally support “remember me” cookies

17

Clay Plug-InClay Plug-In

JavaServer Faces mandates that standard
components support JavaServer Pages (JSP) for
view representation
Issue – interoperability problems with template text

Mostly resolved with JSF 1.2 and JSP 2.1 (part of Java
EE 5)

Issue – Reuse of portions of page layout is difficult
Can be addressed by JSF components focused on this
need

Issue – Some developers prefer a more “pure”
HTML representation of the view portion of an
application

18

Clay Plug-InClay Plug-In

Clay enables grafting a component subtree onto an
existing component tree
Sounds simple, but provides compelling features:

HTML Views – Can separate views into pure HTML
pages, with pointers to component definitions

Similar capabilities found in Tapestry and Facelets
Metadata Inheritance – Component definitions can
extend previous definitions:

Similar in spirit to how Tiles can extend other Tiles
Create reusable “components” with no Java coding

Symbol Replacement – Customize managed bean
names

19

Clay Plug-In – JSP Login PageClay Plug-In – JSP Login Page

<h:form>
 <table border=”0”>
 <tr><td>Username:</td>
 <td><h:inputText id=”username”
 value=”#{logon.username}”/></td></tr>
 <tr><td>Password:</td>
 <td><h:inputSecret id=”password”
 value=”#{logon.password}”/></td></tr>
 <tr><td><h:commandButton id=”logon”
 action=”#{logon.authenticate}”></td></tr>
 </table>
</h:form>

20

Clay Plug-In – Clay Login PageClay Plug-In – Clay Login Page

<form jsfid=”logonForm”>
 <table border=”0”>
 <tr><td>Username:</td>
 <td><input type=”text” name=”username”
 jsfid=”username”/></td></tr>
 <tr><td>Password:</td>
 <td><input type=”password” name=”password”
 jsfid=”password”/></td></tr>
 <tr><td><input type=”submit” value=”Log On”
 jsfid=”logon”/></td></tr>
 </table>
</form>

21

Clay Plug-In – Clay ComponentsClay Plug-In – Clay Components

<component jsfid=”username”
 extends=”inputText”
 id=”username”>
 <attributes>
 <set name=”required” value=”true”/>
 <set name=”value” value=”#{logon.username}”/>
 </attributes>
</component>

22

Clay Plug-InClay Plug-In

So why do I want this?
Pure HTML can be easily built with standard HTML
editors
Graphic artist can include “sample” data that will be
replaced
<table jsfid=”addressList”>
 ... dummy columns and data values ...
</table>

Four general strategies are supported:
Strictly XML that uses composite components
(addressForm)
Tapestry style separate HTML (as illustrated above)
Subtree dynamically built at runtime (<clay:clay> tag)
Pure XML similar to the separate HTML approach

23

Clay Plug-In – Use Case ExamplesClay Plug-In – Use Case Examples

“Clay Use Cases” example application includes four
implementations of a simple example (Rolodex)

24

Tiger ExtensionsTiger Extensions

JSF and Shale use XML for configuration files:
But XML configuration is going out of fashion :-)
Can we reduce or eliminate the need for this stuff?

Java SE 5 (code name “Tiger”) includes
annotations:

Provide metadata, not functionality
Can annotate classes, methods, and fields
Can be examined at compile time for code generation
Can be processed at runtime
NOTE – Not every config element should be an
annotation!
Tiger Extensions adds annotation support to Shale

25

Tiger ExtensionsTiger Extensions

Three categories of annotations are currently
supported:

Annotated managed beans
Annotated view controllers and related data beans
Annotated JSF artifact registration

All of these annotations are processed at runtime
Search for annotated classes in a web application:

/WEB-INF/classes
JAR files in /WEB-INF/lib that have a META-INF/faces-
config.xml resource defined

26

Tiger Extensions – Managed BeansTiger Extensions – Managed Beans

Managed beans typically defined in faces-
config.xml:
<managed-bean>
 <managed-bean-name>foo</managed-bean-name>
 <managed-bean-class>...</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <!-- Optional property initializations -->
</managed-bean>

Replaced by annotations in Java source code:
@Bean(name=”foo”, scope=Scope.REQUEST) public
class Foo
@Property(“#{bar}”) private int bar;

27

Tiger Extensions – View ControllersTiger Extensions – View Controllers

Basic Shale requires your backing beans to
implement the ViewController interface to receive
these services

Therefore requires implementing all callback methods
Tiger Extensions allow you to annotate classes:

@View public class Foo { ... }
And define only callback methods you actually
need:

@Init public void myInit() { ... }
@Preprocess public void setup() { ... }
@Prerender public void justBeforeRendering() { ... }
@Destroy public void destroy() { ... }

28

Tiger Extensions – JSF ArtifactsTiger Extensions – JSF Artifacts

JSF allows component libraries and applications to
register custom artifacts at application startup time:

User interface components
Converters, renderers, and validators

Tiger extensions allow annotated “self registration”:
@FacesComponent(“componentType”)
@FacesConverter(“converterId”)
@FacesRenderer(renderKitId=”x”, componentFamily=”y”,
rendererType=”z”)
@FacesValidator(“validatorId”)

29

Tiger Extensions – Example Use Tiger Extensions – Example Use
CaseCase

Shale SQL Browser – analog to SQL command
console:

Allow user to perform arbitrary SQL SELECT statements
Dynamically reconfigure table columns based on query
In prerender(), execute query and rebuild tree
In destroy(), clean up JDBC resources that were used

Query.java class level annotations:
@Bean(name=”query”, scope=Scope.REQUEST)
@View public class Query { ... }

Query.java method level annotations:
@Prerender public void prerender() { ... }
@Destroy public void destroy() { ... }

30

RemotingRemoting

It is common for applications to respond to
programs as well as to humans:

Web services
AJAX-based asynchronous requests

Shale provides features to make this easier:
For application developers
For JSF component authors

Packaged as a small (40k) JAR, only needs JSF
Zero configuration if you accept the defaults
Implemented as a JSF PhaseListener

31

RemotingRemoting

Primary concept is the Processor:
public interface Processor {
 public void process(FacesContext context, String
resourceId)

 throws IOException;
}

Processor examines resource identifier and
constructs the entire response
Processors are registered to a URL pattern like
servlets:

Path mapping and extension mapping are supported
Creates a FacesContext so you can use EL expressions
and managed beans

32

RemotingRemoting

Processor architecture is extensible:
Each processor mapped to a URL pattern
Application specific Processors can be configured

Standard processor implementations are provided:
Serve static resource from the classpath (embedded in
JARs)

http://localhost:8080/myapp/static/org/apache/foo.css.faces
Serve static resource from the web application

http://localhost:8080/myapp/webapp/resources/foo.js.faces
Map to a dynamically generated method binding:

http://localhost:8080/myapp/dynamic/foo/bar.faces
Executes method binding #{foo.bar} to return the response

http://localhost:8080/myapp/static/org/apache/foo.css.faces
http://localhost:8080/myapp/webapp/resources/foo.js.faces
http://localhost:8080/myapp/dynamic/foo/bar.faces

33

RemotingRemoting

Helper classes to assist developers:
Two-way mapping of resource id <----> URL
Create ResponseWriter implementation for dynamic
output

AJAX demonstration components delivered with
Sun Java Studio Creator were implemented with
Shale Remoting

http://developers.sun.com/jscreator/

34

Other Shale FeaturesOther Shale Features

Application Controller
Configured as a servlet filter
Supports decoration of the request processing lifecycle

Uses “chain of responsibility” design pattern (Commons
Chain)
Similar in spirit to customizing request processor in Struts

JNDI and Spring Integration:
Custom JSF variable and property resolvers
Transparent access to JNDI contexts and Spring created
beans, via EL expressions

Unit testing framework:
Mock objects for building unit tests

35

Other Shale FeaturesOther Shale Features

Struts Functionality Equivalents:
Commons Validator for client side validation

Implemented as a JSF validator
Tiles Support

Based on “standalone” version of Tiles being developed
No dependency on Struts
Can navigate to a view or to a tile

Transaction token support
Prevent duplicate submits of a form
Implemented as a component that fires validation failures
on duplicate submits

36

Current StatusCurrent Status

Current release is 1.0.3:
Depends on unreleased Standalone Tiles library
Significant functional issues in dialog functionality

A 1.0.4 release is imminent:
Primary focus – fix bugs in Dialog Manager
Small number of other features, many bugfixes
Splitting core functionality into independent modules

Most APIs in Shale are stable enough to use today:
http://shale.apache.org/api-stability.html
Pay attention to which APIs are designed for use by
applications, versus those extending the framework

http://shale.apache.org/api-stability.html

37

Today's NewsToday's News

Shale has a brand new logo image:

And a “powered by” logo:

Congrats to Walied Amer, logo contest winner

38

Questions and Answers

