The Shale Framework
http://shale.apache.org/

Craig McClanahan
Gary Van Matre

ApacheCon US 2006
Austin, TX


http://shale.apache.org/

» Background

» JavaServer Faces and Other Frameworks
> Tour of Shale Features

» Shale and Struts

» Current Status

» Questions and Answers



» JavaServer Faces 1.0 released in March

2004
» |nitial focus on getting the component APls right
» Hidden inside is a front controller
> No time to address framework aspects well
> S0, provided extension points
» Extension points can be used by:
» Components — to provide specialized services
*» Frameworks — to provide additional functionality
» Applications — to meet specific requirements



+ JSF came into being in a world filled with
frameworks
» Desire to leverage new and old capabilities together

» Two fundamental approaches to integration:
» Treat JSF as a view tier only
» Treat JSF as a conftroller and a view tier

» The first approach is available for several
frameworks now:
° Spring
o Struts
> Beehive

» And is easily added to others



» This first approach has overlapping sets of issues:
» Resulting application architecture:
> Typically a front controller “in front of” a front controller
» JSF handles Ul events, delegates form submit events
» QOverall architectural elegance:
» Redundant functionality — conversion, validation, page
navigation, invoking actions
» |mpedance mismatches — expression language syntax,
lifecycle differences

» Treating JSF as view tier only is recommended
primarily as a migration strategy, not as an
endgame



» Building a framework on top of JSF has

advantages:

» Smaller — skip implementing redundant functionality

» Easier to use — learn one approach to each need

» Enables a focus on adding features and improving ease
of use

» Started work on Shale in Fall 2005, focused on:

» Adding ease of use APls inspired by Java Studio Creator

> |ntegrate functionality that existing Struts users expect:
» Client side validation, Tiles layout management

» |ntegrate new functionality enabled by JSF

» (Later) Add a layer that leverages Java SE 5 annotations

6



» To date, | am aware of only one other framework

that is taking this approach — JBoss Seam:

» Focused on tying JSF to JPA and EJB3

» Also includes features for workflow orchestration
> Submitted as the basis for JSR-299

» But extensions capabilities are widely used:
» Clay / Facelets — Alternative view representations
» AJAX component libraries — inject phase listeners w/o
external configuration

» Treating JSF as a controller and a view tier is the
recommended approach for new projects using JSF



» VariableResolver — Customize evaluation of first

token in expressions

* PropertyResolver — Customize evaluation of the “.”
operator in expressions

» NavigationHandler — Customize navigation
decisions

» ViewHandler — Customize view creation and
restoration

» PhaseListener — Participate in (and modify) the
standard request processing lifecycle



» Key Functionality:
> View Controller
» Dialog Handler
> Clay Plug-In
» Tiger Extensions
» Remoting

» Other Features:
» Application Controller
» JNDI and Spring Integration
» Unit Testing Framework
o Struts Feature Integration (Validator, Tiles, Token)



« A common pattern in JSF is backing bean per page

» Must know the JSF request processing lifecycle to
understand where to inject some types of
application logic

+ Example — DB query needed to populate a table:

> Only want to perform the query if it will actually be used
» Skip it if the user navigated to a different page

» Example — Need a transactional resource available

through rendering, but then need to clean up
> Need to regain control after rendering is completed

10



+ Shale provides an optional interface for your

backing bean

» Also use a naming convention for managed bean names
» Implements the “"Hollywood Principle™:

» Don't call us, we'll call you
» Four application oriented callbacks are provided:
init() -- called when view is created or restored
preprocess() -- called when about to process a postback
prerender() -- called when about to render this view
destroy() -- called after rendering, if init() was called

» AbstractViewController — Convenience base class

11



+ Shale MailReader (With JPA) Example Application
» Typical two-page master-detail CRUD scenario
» Uses Java Persistence Architecture for database access
» A Hibernate based application would look very similar
> Will focus on JPA aspects in the next session
» Usage of view controller callback methods:
* init() -- Process optional request parameters

(bookmarkable URLS)
» preprocess() -- Restore cached entity instance and mode

» prerender() — Cache current entity instance and mode
» destroy() -- No cleanup required

12



« Standard JSF navigation handler decides based on:
» What view am | currently processing?
» Which execute action method was invoked?
> What logical outcome was returned by this action?

+ |ssue — modelling of a “conversation” is ad hoc

» |ssue — how do we deal with conversational state?
» Pass information in hidden fields
» Can be unwieldy when numerous fields are required

» Store information in session
> Occupies memory if not cleaned up

13



» Dialog Manager deals with these issues:
» Models conversations as an execution engine
» Provides storage mechanism for conversational state
» Heavily inspired by Spring Web Flow, but “JSF-ized”
» Caution — Following functionality is currently in the
Shale sandbox,but will be imported to trunk soon

» Application uses DialogContext abstraction
» Maintain state (getData(), setData())
» Execution: start(), stop(), and advance()
» Parent dialog support (for popups)
o Start dialogs programmatically or via navigation

14



» Two implementations to be included
» Selected based on which JAR you include

» “Basic” Implementation:
» Compatible with historical dialog implementation
> Models conversation as a simple state machine
» Four state types: action, view, subdialog, exit
» State transitions based on logical outcomes

» “State Chart XML"” implementation:

» Advanced state mac
o http://www.w3.org/T
» Conditionals, paralle

nine based on:
R/scxml/

execution, and more ...

15


http://www.w3.org/TR/scxml/

» “Use Cases” Demo Application logon dialog:
» Log on with existing username and password
» Create user profile and log on
» Edit existing user profile
» Optionally support “remember me” cookies

16



» JavaServer Faces mandates that standard
components support JavaServer Pages (JSP) for
view representation

* |ssue — interoperability problems with template text
» Mostly resolved with JSF 1.2 and JSP 2.1 (part of Java
EE 5)

*» |ssue — Reuse of portions of page layout is difficult
» Can be addressed by JSF components focused on this
need

* [ssue — Some developers prefer a more “pure”
ITML representation of the view portion of an

application

17



+ Clay enables grafting a component subtree onto an
existing component tree

» Sounds simple, but provides compelling features:
o HTML Views — Can separate views into pure HTML
pages, with pointers to component definitions
» Similar capabilities found in Tapestry and Facelets
» Metadata Inheritance — Component definitions can
extend previous definitions:
» Similar in spirit to how Tiles can extend other Tiles
> Create reusable “components” with no Java coding
» Symbol Replacement — Customize managed bean

names

18



<h:form>
<table border="0">

<tr><td>Username:</td>

<td><h:inputText id="username”
value="#{logon.username}” /></td></tr>
<tr><td>Password:</td>
<td><h:inputSecret id="password”
value="#{logon.password}”/></td></tr>
<tr><td><h:commandButton id="logon”
action="#{logon.authenticate}”></td></tr>
</table>
</h:form>

19



<form jsfid="logonForm”>
<table border="0">

<tr><td>Username:</td>

<td><input type="text” name="username”
Jjsfid="username” /></td></tr>
<tr><td>Password:</td>
<td><input type="password” name="password”
Jjsfid="password” /></td></tr>
<tr><td><input type="submit” wvalue="Log On”
Jsfid="logon” /></td></tr>
</table>
</form>

20



<component jsfid="username”

extends="inputText”

id="username’” >

<attributes>

<set name="required” value="true” />

<set name="value” value="#{logon.username}” />
</attributes>

</component>

21



+ So why do | want this?
» Pure HTML can be easily built with standard HTML
editors
» Graphic artist can include “sample” data that will be

replaced
<table jsfid="addressList”>
. dummy columns and data values ...
</table>

» Four general strategies are supported:
o Strictly XML that uses composite components
(addressForm)
» Tapestry style separate HTML (as illustrated above)
» Subtree dynamically built at runtime (<clay:clay> tag)
» Pure XML similar to the separate HTML approach

22



» “Clay Use Cases” example application includes four
implementations of a simple example (Rolodex)

23



+ JSF and Shale use XML for configuration files:
» But XML configuration is going out of fashion :-)
» Can we reduce or eliminate the need for this stuff?

» Java SE 5 (code name “Tiger”) includes

annotations:

» Provide metadata, not functionality

» Can annotate classes, methods, and fields

» Can be examined at compile time for code generation
» Can be processed at runtime

» NOTE — Not every config element should be an
annotation!
» Tiger Extensions adds annotation support to Shale

24



» Three categories of annotations are currently

supported:

» Annotated managed beans

» Annotated view controllers and related data beans
» Annotated JSF artifact registration

» All of these annotations are processed at runtime

» Search for annotated classes in a web application:

» /\WEB-INF/classes
» JAR files in /WEB-INF/lib that have a META-INF/faces-
config.xml resource defined

25



» Managed beans typically defined in faces-
config.xmi:

<managed-bean>
<managed-bean-name>foo</managed-bean-name>
<managed-bean-class>. . .</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>
<!-- Optional property initializations -->
</managed-bean>

» Replaced by annotations in Java source code:

> @Bean(name="foo", scope=Scope.REQUEST) public
class Foo

> @Property(“#{bar}") private int bar;

26



» Basic Shale requires your backing beans to
implement the ViewController interface to receive

these services
» Therefore requires implementing all callback methods
» Tiger Extensions allow you to annotate classes:
> @View public class Foo { ... }
» And define only callback methods you actually

need:

PeE®

nit public void mylnit() { ... }
Preprocess public void setup() { ... }
Prerender public void justBeforeRendering() { ... }

Destroy public void destroy() { ... }

27



» JSF allows component libraries and applications to

register custom artifacts at application startup time:
» User interface components
» Converters, renderers, and validators

» Tiger extensions allow annotated “self registration”:
> @FacesComponent(“componentType”)
» @FacesConverter(“converterld”)
» @FacesRenderer(renderKitld="x", componentFamily="y",
rendererType="z")

> @FacesValidator(“validatorld”)

28



Example Use

» Shale SQL Browser — analog to SQL command
console:

> Allow user to perform arbitrary SQL SELECT statements
» Dynamically reconfigure table columns based on query
» |n prerender(), execute query and rebuild tree

> |n destroy(), clean up JDBC resources that were used

» Query.java class level annotations:

> @Bean(name="query”, scope=Scope.REQUEST)
@View public class Query { ... }

> Query.java method level annotations:

> @Prerender public void prerender() { ... }

» @Destroy public void destroy() { ... }

29



* |t is common for applications to respond to

programs as well as to humanes:
» Web services
» AJAX-based asynchronous requests

» Shale provides features to make this easier:

» For application developers
~or JSF component authors

Packaged as a small (40k) JAR, only needs JSF

» Zero configuration if you accept the defaults
* Implemented as a JSF PhaselListener

30



» Primary concept is the Processor:

public interface Processor ({
public void process (FacesContext context, String
resourceld)
throws IOException;

}

» Processor examines resource identifier and
constructs the entire response

» Processors are registered to a URL pattern like
servlets:

» Path mapping and extension mapping are supported
» Creates a FacesContext so you can use EL expressions

and managed beans

31



» Processor architecture is extensible:
» Each processor mapped to a URL pattern
» Application specific Processors can be configured

» Standard processor implementations are provided:

» Serve static resource from the classpath (embedded in

JARS)

* http://localhost:8080/myapp/static/org/apache/foo.css.faces
> Serve static resource from the web application

> http://localhost:8080/myapp/webapp/resources/foo.js.faces
» Map to a dynamically generated method binding:

» http://localhost:8080/myapp/dynamic/foo/bar.faces

» Executes method binding #{foo.bar} to return the response

32


http://localhost:8080/myapp/static/org/apache/foo.css.faces
http://localhost:8080/myapp/webapp/resources/foo.js.faces
http://localhost:8080/myapp/dynamic/foo/bar.faces

» Helper classes to assist developers:
» Two-way mapping of resource id <----> URL
» Create ResponseWriter implementation for dynamic
output

+ AJAX demonstration components delivered with
Sun Java Studio Creator were implemented with

Shale Remoting
» http://developers.sun.com/jscreator/

33



» Application Controller
» Configured as a servlet filter

» Supports decoration of the request processing lifecycle
» Uses “chain of responsibility” design pattern (Commons

Chain)
e Similar in spirit to customizing request processor in Struts
» JNDI and Spring Integration:
» Custom JSF variable and property resolvers
» Transparent access to JNDI contexts and Spring created
beans, via EL expressions
» Unit testing framework:
» Mock objects for building unit tests

34



+ Struts Functionality Equivalents:

» Commons Validator for client side validation
» Implemented as a JSF validator

> Tiles Support
» Based on “standalone” version of Tiles being developed
> No dependency on Struts
» Can navigate to a view or to a tile

> Transaction token support

* Prevent duplicate submits of a form
* Implemented as a component that fires validation failures

on duplicate submits

35



» Current release is 1.0.3:
» Depends on unreleased Standalone Tiles library
» Significant functional issues in dialog functionality
> A 1.0.4 release is imminent:
» Primary focus — fix bugs in Dialog Manager
» Small number of other features, many bugfixes
» Splitting core functionality into independent modules
» Most APls in Shale are stable enough to use today:
» http://shale.apache.org/api-stability.html
» Pay attention to which APIs are designed for use by
applications, versus those extending the framework

36


http://shale.apache.org/api-stability.html

» Congrats to Walied Amer, logo contest winner

37



Questions and Answers

38



