
What‘s new in Cocoon?

Carsten Ziegeler
cziegeler@apache.org

Competence Center Open Source
S&N AG, Germany



2

About

• Member of the Apache Software Foundation
• Committer in some Apache Projects

– Cocoon, Excalibur, Pluto, WSRP4J, Incubator
– PMC: Cocoon, Incubator, Portals

• Chief Architect of the Competence Center 
Open Source, S&N AG, Germany

• Article/Book Author, Technical Reviewer
• Member of the JSR 286 spec group (Portlet

API 2.0)



3

Agenda

• What is Cocoon?
• Why 2.2?
• The Vision
• The Current State
• Outlook
• Discussion



Present



5

What is Apache Cocoon? �
Apache Cocoon is a web development framework built around the

concepts of separation of concerns and component-based web 
development.

Cocoon implements these concepts around the notion of 'component
pipelines', each component on the pipeline specializing on a 
particular operation. This makes it possible to use a Lego(tm)-like
approach in building web solutions, hooking together components
into pipelines without any required programming.
Cocoon is "web glue for your web application development needs". It
is a glue that keeps concerns separate and allows parallel evolution
of all aspects of a web application, improving development pace and 
reducing the chance of conflicts.



6

• Cocoon is a powerful web application 
framework
– It is not just an XML web publishing platform

• Serious web applications can still be fun
• Write code only when you need to
• The magical trio: pipelines, flow and forms
• Cocoon is aimed for larger projects/teams!

What is Cocoon?



7

Apache Cocoon

• Top-Level Apache Open Source project
– http://cocoon.apache.org

• Started in 1999 (XML Publishing Framework)
• Today

– One of the most important Apache projects
– Incorporates technologies from various project
– Used/Supported by several minor and major 

companies



8

• Component Based Architecture
• Focus on Composing rather than Programming

– “We figure out the hard parts, you get to do the fun 
stuff.”

• Core + Blocks
– Core = pipelines, sitemap, flow, forms, template
– Blocks: Portal, Cron, FOP, Axis, POI, Batik, 

Databases, Authentication, OJB, SAP, WebDAV …
– Built-time application assembly configuration
– (Hot-deployment and -reconfiguration is comming)

Extensible Architecture



9

Motivation for 2.2

• Learning curve can be steep at the beginning
– New technologies: XML, XSL, SAX
– New architecture: Sitemap, Pipelines, Flow
– Lots of "features"

• What do I really need?

– "Could be better" documentation
• Books are available / Wiki

• Build Time Configuration
• Getting at the top again �



10

Learning Curves

Complexity

Effort

Cocoon



Cocoon in a Nutshell



12

• Dynamic Document Generation
– Based on XML/XSLT (but not limited to)

• Used for various application scenarios
– Web Sites, Content Publishing
– (XML) Portals/Workplaces
– Processing Systems, Business Integration
– CMS, Reporting, Administration Tools

Scenarios



13

• VNU
• Vodafone
• BASF
• ÖAMTC
• Major (German) banks
• Insurance Companies

����� ��� 	
 � ��� ��� ��
 �� ���� ���������

Some References



14

Real World Applications



15

Separation of Concerns
• UI: Templating and XSLT

– Available components (Cocoon Forms)
– XHTML, CSS, AJAX

• Controller/Application Flow
– Cocoon Flow (JavaScript), Spring WebFlow

• Business Layer
– Cocoon Forms
– JavaScript/Java
– 3rd party frameworks



16

Apache Cocoon



17

Web Publishing with Cocoon
• Flexible Data Integration / Aggregation

– XML files, XML over HTTP
– Databases, LDAP, SAP
– …

• Flexible Publishing (using XSLT)
– HTML, WML, XML
– PDF, SVG, PS, Office Documents
– …



18

• Dynamic Document Generation
– Separation of Content and Layout

• Powerful Processing Description (Sitemap)
• Flexible Pipeline Concept

– Many available components

• Conditional Processing (Matches/Selects)
• Caching

Web Publishing with Cocoon



19

• The Easy Way
– Use Cocoon with Flow, Forms and Template �

– Add your own business layer (Spring, Hibernate)
• Don‘t use flow script for everything

– Benefit from separation of concerns
• Develop component oriented

• But
– The first steps might be hard!
– Don‘t give up – the effort pays back

Building Web Applications



The Vision



21

The Vision: Real Blocks™
• Blocks are reusable functional modules at the cocoon web 

application level. 
• Blocks were introduced in Cocoon to allow users to: 

– easily deploy their content on Cocoon without requiring
operation downtime

– package functionality /services in modules that can be
reused as-is

– easily extend existing modules
– create complex web applications by high-level composing

of these functional modules
– depend on module behaviors, allowing for polymorphic

module composition



22

The Vision: Real Blocks™

• Hot-Deployment
• Resolving of dependencies

– Maven-style repository downloads
– Versioning
– Classloading

• Reconfiguration
• Make blocks independent (own versioning)



23

The Gordian Knot

• Plans for 2.2 are very old (nearly 4 years)
• Last year: „quiet period“ for development

– Rest on our laurels
– Hope that Avalon improves/helps

• Other component frameworks evolved
– Especially Hivemind and Spring

• Rapid application frameworks
– Ruby on Rails

• Noone dared to tackle the issues
– Way too complex!



24

The Gordian Knot has been cut!

• The Legend Of Avalon...has ended
– Avalon is closed but maintained at Excalibur �

• Avalon was a core-dependency for Cocoon
– Cocoon not runnable without it!
– No evolution possible in Cocoon without Avalon

• Cocoon wanted to
– have an independent core but
– reuse efforts of other projects
– without reinventing the wheel



25

The New Core – 2005

• Own Component Container
– Based on Avalon Code
– Provides Avalon Compatibility
– Adds own functionality

• Separation between core and application!
– Core uses own container
– Applications are encouraged to use what they

need! (Avalon, Spring etc.)



26

The New Core – Final

• Spring Framework 2.0
– Added Avalon Compatibility
– Added own functionality

• Slowly turning away from Avalon Interfaces
– Only for Cocoon itself!

• Separation between core and application!
– Core uses Spring
– Applications are encouraged to use what they

need! (Spring, Hivemind etc.)



The current State of Cocoon 2.2

„Nothing is carved in stone yet!“



28

Goals for 2.2

• Flatten the learning curve
• Consolidation
• Support rapid prototyping/development
• Make building and configuring easier
• Better documentation

– Make writing documentation easier
• Enabler for Real Blocks™
• BUT: Be as compatible as possible!



29

Configuration

• Central Configuration (cocoon.xconf) is split
– Includes per block configurations
– Dependencies are handled by Spring
– Removing/adding a block by removing/adding

the appropriate configuration
– Own configuration can be put into own files

• Avalon based configuration is merged with
Spring application context configuration



30

Configuration

• Using Cocoon is easy through Spring 
namespace authoring:

<beans>
<!-- Load all the properties for Cocoon -->
<cocoon:settings/>

<!-- Load Avalon configurations -->
<avalon:avalon location="/WEB-INF/cocoon/cocoon.xconf"

loggingConfiguration="/WEB-INF/cocoon/log4j.xconf"/>

<!– Add your own beans here -->
...

</beans>



31

Configuration - Properties

• Dynamic properties can be used
– In all component configurations (cocoon.xconf etc)
– In all log4j configurations
– In sitemap

• Support of running mode:
– dev,prod, test

• Ant-style usage:
– <dburl>${myapplication.dburl}</dburl>

<user>${myapplication.dbuser}</user>
<password>${myapplication.dbpasswd}</password>



32

Configuration - Properties

• Property resolving
– WEB-INF/cocoon/properties/*.properties
– WEB-INF/cocoon/properties/{running.mode}/*.properties
– Properties specified on startup
– Own property provider (e.g. from database)
– System properties



33

Per Sitemap Configuration

• Per Sitemap Configuration Possible
– only available to sitemap and their sub sitemaps
– Components (Avalon/Spring)
– Properties
– Especially interesting with classloading...



34

Sitemap Classloading

• Per Sitemap classloading possible
– Use different versions of libraries
– Hot-Reloading when sitemap is reloaded
– Faster development
– Just drop your webapp including Java code

as a sub sitemap into Cocoon



35

Sitemap Listeners

• Configure per sitemap listeners
– Invoked when a request enters a sitemap
– Invoked when a request leaves the sitemap

• Events contain information about request
• Enabled initialization of request values

– Can be done with actions or flow as well

• Enabled cleanup after request is processed!



36

Consolidation in 2.2

• The Burden of Compatibility �

• Remove deprecated blocks
• Streamline parallel development
• Cocoon Forms
• Templates (JXTG)



37

Benefits of Cocoon 2.2

• Rapid Development
• Spring 2.0
• Modular Configuration

– Avalon (Compatibility)
– Spring
– Property Replacements

• Running Modes
• Hierarchical Configuration



38

The Current State of 2.2

• Requires JDK 1.4 / Servlet 2.3
• New Build System

– Maven 2
– Archetypes

• First "Milestone Releases" out!
• Check it out and give feedback!



39

Distribution/Release

• 2.2 will be released when it‘s finished �

– Hopefully released in 4th quarter of 2006
– Many features already implemented/prototyped
– Nothing is carved in stone yet!

• Blocks will be made available separately
• Binary Distribution
• Different Flavours (Core, Demo, Full)?



Summary



41

What You Should Do �
• Checkout/Download Cocoon 2.2
• Try out the Demos

– Forms and Flow
– AJAX
– Portal



42

Summary

• Stable platform (3 years+)
• Large community

– Including large corporations
– "Awareness" in the public is growing fast

• Separation of Concerns
– Team Development

• Driven by user/developer needs
– Not a Research Project!



43

Benefits

• No real alternative
– That offers everything available in Cocoon

• XML driven architecture
– Extensible with own components

• Flexible data integration and publishing
– Often: No programming needed

• Large code-base
– Many components provided
– Most of the hard work is done already



44

Your Benefits
• Solid Framework (more than 5 years of 

experience)
• Separation of Concerns
• Real Team Development
• Rich Set of Functionality
• "Modern" techniques and frameworks



45

Further Information

• Apache Cocoon Project
– http://cocoon.apache.org
– Downloads, Mailing-Lists, Links

• Cocoon Documentation Wiki
– http://wiki.apache.org/cocoon

• Apache Forrest, Apache Lenya and others!
• Books available
• Competence Center Open Source �

– http://www.ophelos.de



46

Thanks for your attention!

Questions?


