
Portals@Apache

Standards and the Portals Project
Carsten Ziegeler
cziegeler@apache.org

Competence Center Open Source
S&N AG, Germany

2

About

• Member of the Apache Software Foundation
• Committer in some Apache Projects

– Cocoon, Excalibur, Pluto, WSRP4J, Incubator
– PMC: Cocoon, Incubator, Portals

• Chief Architect of the Competence Center
Open Source, S&N AG, Germany

• Article/Book Author, Technical Reviewer
• Member of the JSR 286 spec group (Portlet

API 2.0)

3

• Portal Basics
• JSR 168
• WSRP
• Apache Portals Project

Agenda

4

• Different Portal Vendors with their own APIs
– No interoperability between local portlets and portal

servers
– Application and Content Providers must implement

different portlets for different portal servers

• Quickly locked into a particular portal solution
• No standardized way to plug-n-play content and

applications into portals
• No standardized way of integrating remote content

The Past (before JSR 168 and
WSRP)

Portal Standards

Portals and the JSR 168

6

• Web Based Application
– Personalization
– Individualization
– Content Aggregation

• Using Portlets

– Single Sign On

What is a Portal?

7

• Integration of different data sources
– Static sources (HTML, XML, Office Documents…)
– Dynamic sources (CMS, Archives…)
– Databases (SQL DB, XML DB, LDAP…)
– Complex Applications

• Multi Channel
– PCs (HTML, XML)
– Mobile, Organizer (WML)
– Documents (PDF, Office Documents), Email
– Applications

Common Requirements for a
Portal

8

A Portal Page Sample

<Title>

<Portlet Content>

<Title>

<Portlet Content>

<Title>

<Portlet Content>

<Title>

<Portlet Content>

Decoration and controls

Portlet window

Portal Page

9

• Web Component
– Generates (dynamic) Content

• News
• Links
• Complete Web Application
• …

– Managed by a Portlet Container

What is a Portlet?

10

Specified by JSR 168Portal Server

Client Request

Overview

Read Portal
Profile

(Layout and
Portlets)

Portlet Container

Render
Page

Portlet A

Portlet B

Portlet C

Rendered Page

User/Device

11

• Java API for interoperability among portlets and
portals
– Portlet Development (based on J2EE 1.3)
– User Information and Preferences
– Localization, Security

• Similar to Servlet API
– Request-Response Cycle
– Own Deployment Descriptor

• Portlet Container extends Servlet Container
– Servlet Specification 2.3
– Not covered in the JSR

The JSR 168 – Portlet API

12

• Write a Java class conforming to Portlet Interface
• Abstract class GenericPortlet can be used as basis
• Portlets are stateless wrt user (Singleton)
• Evaluation of portlet modes and window modes
• Generate content by writing into character stream
• Possible to use more sophisticated view layers:

– JSP tag library is part of the specification
– Different open source approaches

• Bridges, JSF, Struts, Cocoon, Spring etc.

Developing Portlets

13

Portlet Life Cycle Methods I
Methods invoked once(!):

init(configuration)
– Instantiation by the container
– prepares the Portlet to serve requests

destroy()
– Destruction by the container
– cleans up the Portlet (no longer needed/shut down)

14

Portlet Life Cycle Methods
Methods invoked per "instance"/request:

processAction(request and response)
– Notification of changes/actions from the user
– process user input

render(request and response)
– Request to render the portlet in it’s current state

15

public class HelloWorldPortlet implements Portlet {

...

public void render(RenderRequest req, RenderResponse res)

throws PortletException, IOException {

res.setContentType("text/html");

Writer writer = res.getWriter();

writer.write("<h1>Hello World</h1>\n");

...

}

...

}

Developing Portlets - Sample

16

JSR 168 Elements

• Definition of valid markup fragments for
– HTML / XHTML
– CSS Styles
– Namespacing

• URL Handling
• Portlet Lifecycle
• Modes and Window States
• (Caching)

17

public class HelloWorldPortlet implements Portlet {

...

public void render(RenderRequest req, RenderResponse res)

throws PortletException, IOException {

res.setContentType("text/html");

Writer writer = res.getWriter();

writer.write("<div class='portlet-font'>Hello
World</div>\n");

...

}

...

}

Developing Portlets - Sample

CSS

18

public class HelloWorldPortlet implements Portlet {

public void render(RenderRequest req, RenderResponse
res)

throws PortletException, IOException {
...
PortletURL url;
url = res.createRenderURL();
url.setPortletMode(PortletMode.EDIT);
writer.write("<a href='");
writer.write(url.toString());
writer.write("'>");
writer.write("Edit mode");
writer.write("");

}
}

Developing Portlets - Sample

Create
a URL

19

• with content produced by portlets
– Links or forms in the content

• with decoration
– Links or buttons rendered by the portal

• Request/response cycle handled by the portal
– Actions are forwarded to the portlets
– Portlets may change their state
– Page with all portlets is rendered

User Interaction

20

User Interaction - Flow
Specified by JSR 168Portal Server

Client Request

Portlet Container

Render
Page

Portlet A

Portlet B

Portlet C

Rendered Page

Process
Request

21

• Required
– View – generate the content

• Optional
– Edit – editing of user preferences
– Help – provide help for the user

• Custom
– About, Config, Edit_defaults, Preview and Print

• Portal vendor-specific modes are possible

Portlet Modes

22

Portlet Window States
• Required

– Normal (default)
• Portlet may share the view with other portlets

– Maximized
• Portlet has more space than usual

– Minimized
• Portlet should render minimal output/no output at all

• Portlet must handle all, but is free to generate the
same content!

• Portal vendor-specific window states are possible

23

Portlet Preferences
• User specific data can be stored
• Service defined by the Portlet API
• Functionality provided by the Portlet container
• Access to preferences:

– Action phase: read and write
– Rendering phase: read only

• Default values in the deployment descriptor
• Preferences are key-value pairs

– Value is either a string or an array of strings
– Key is a string

24

Portlet Session Scope
• Portlet applications are Web applications

– Sharing session with servlets

• Portlets can store private temporary data
– Put with prefixes in the session (portlet scope)

• Portlets can share temporary data
– Every component of the Web application can

access it (application scope)
– Sharing between: portlets, servlets, JSPs etc.

25

Portlet Deployment
• Portlets are deployed like a web application

– war file
– Including resources (images, JSP etc.)

• Two deployment descriptors
– Web application
– Portlet application (portlets, configuration)

• Portlet container may inject information into each
Portlet application during deployment

26

Portlet Deployment Descriptor
(Extract)

<portlet>

<description>TestSuiteDescription</description>

<portlet-name>TestPortlet1</portlet-name>

<portlet-class>HelloWorldPortlet</portlet-class>

<init-param>

<name>config</name>

<value>/WEB-INF/testsuite-config.xml</value>

</init-param>

<supports>

<mime-type>text/html</mime-type>

<portlet-mode>VIEW</portlet-mode>

<portlet-mode>EDIT</portlet-mode>

<portlet-mode>HELP</portlet-mode>

</supports>

<supported-locale>en</supported-locale>

<supported-locale>de</supported-locale>

...

27

Advantages of the Portlet
Specification

• Multiple Portal products can be supported
• Reusable code and portlets possible

– More and more (open source) portlets are
available

• Common tools are possible
• Open Source solutions available
• Rules for the markup (HTML with CSS,

namespacing)

28

Potential Problems of the Portlet
Spec.

• Important areas are not covered yet
– Inter-Portlet communication
– Potential danger of using vendor-specific features
– Each portal solution provides add-ons

• communication, services, component containers etc.

• Characters based approach
– No direct XML Support

29

The Present (with JSR 168)
• Standardized API

– Vendor specific add-ons
– Quickly locked into a particular portal solution

• Bridges are used for implementation
– Cocoon, JSF, Struts, Spring etc.

• Start using JSR 168
• Migrate only if required
• Integration of “complete” webapps as a portlet

– Use generic proxy portlets
– Or: WSRP

30

The Future (JSR 286)
• Portlet Specification 2.0

– Started January 2006
– First public draft soon available – scheduled for Q1/2007

• Corrections and clarifications
• Aligns with WSRP 2.0
• Add access to Composite Capability/Preference Profiles

(CC/PP) data via the JSR188 API
• Introduction of portlet filters
• Inter-portlet communication
• Extended Lifecycle – notion of portlet instances
• J2EE 1.4 support
• Enhanced caching support

Portal Standards

Remote Portlet API - WSRP

32

WSRP–Web Service for Remote
Portlets

• A standard for interactive, presentation-oriented web
services
– not tied to a programming language
– publishing and consuming of content

• Sharing of portlets (markup fragments) over the
internet with a common interface

• JSR 168 portlets run in the Portal Server – WSRP
portlets run on a different server

33

Portlets Using Web Services
(Traditional)

• Different WS have different Interfaces
• Customized Proxies for each WS required
• Code/Deployment locally required

Portlet A

Portlet B

Proxy A

Proxy B

WS A

WS B

Portal
Aggregation

C
lient

WS specific interfacePortlet API

C
lient

C
lient

34

Portlets Using WSRP

Generic
Portlet

Generic
Portlet

Generic
Stub

Generic
Stub

WebApp
A

WebApp
B

Portal
Aggregation

WSRP

• Unified API for WS
• No coding required: (available) generic code
• Presentation-oriented

Portlet API

C
lient
C

lient
C

lient

35

Data Data

Presentation Layer

Presentation Layer
Web Service

Web Service

Data Oriented Web Services vs.
WSRP

36

WSRP Elements
• Definition of valid markup fragments for

– HTML / XHTML
– CSS Styles
– Namespacing

• URL Rewriting (Consumer and Producer)
• Session Handling

– Context: User and device information
• Portlet Lifecycle
• Modes and Window States

– View, edit, help, preview
– normal, minimized, maximized

• Resource Proxying

37

WSRP Interface (WSDL)
• Service Description (mandatory)

– Consumer queries Producer

• Markup (mandatory)
– Getting content and user interaction

• Portlet Management (optional)
– Consumer creates own customized instances

• Registration: (optional)
– Consumer can register with Producers

38

Using WSRP in a Portal

• Portals can aggregate presentation from many WSRP
services

• WSRP services can be aware of portal context
– User profile from portal
– Desired locale and markup-type
– Active user agent

Aggregated HTML Mark-Up fragments

WSRP Service

WSRP Service

WSRP Service

Consumer Producer

C
lient
C

lient
C

lient

Portal
Aggregation

39

...

Click here on <A HREF="wsrp_rewrite?wsrp-
urlType=blockingAction&wsrp-
mode=wsrp:view&wsrp-
interactionState=XXX&wsrp-
windowState=wsrp:normal&wsrp-
secureURL=false/wsrp_rewrite">Action
URL.

Namespace:

Pluto_127.0.0.1_1100620743364_2_someFunction
Here()

...

WSRP – Sample Markup
Fragment Create a

URL

Namespace

40

WSRP Achievements
• Plug&Play interoperability

– between Content Providers and Portal Vendors

• Interoperable across a variety of WS stacks
• Markup retrieval, interaction processing
• Separation of Concerns

– Security relies on underlying stack (WS-security,
SSL)

– Other concerns can be added, e.g. Billing

• Alignment with JSR 168

41

Advantages of WSRP
• Standardized way of integrating services

– Plug&Play – generic components

• Services are already presentation oriented
• Common tools are possible
• Open Source solutions available
• Rules for the markup (HTML with CSS,

namespacing)

42

Potential Problems of WSRP
• Not very common (today)
• A Step back to HTML
• Availability of own solution depends

(additionally) on availability of all used
services

43

Future of WSRP – 2.0
• Event Handling
• Additional markup types (VoiceXML,

WML, cHTML)
• Add access to Composite

Capability/Preference Profiles (CC/PP) data
• Enhanced Caching
• Attachments

44

JSR 168 and WSRP
• JSR 168 aligns closely with the WSRP

– (JSR 286 and WSRP 2.0 will, too)

• Emerged at the same time
• Released open source implementations
• Both standards strive to work well together

– Similar modes/functionality

Portal Standards

The Apache Portals Project

46

The Apache Portals Projects

is a collaborative software development project dedicated to
providing robust, full-featured, commercial-quality, and
freely available Portal related software on a wide variety
of platforms and programming languages. This project is
managed in cooperation with various individuals worldwide
(both independent and company-affiliated experts), who use
the Internet to communicate, plan, and develop Portal
software and related documentation.

47

• Current Projects
– Jetspeed 1/Jetspeed 2
– Pluto
– WSRP4J (Incubation)
– Bridges
– Graffito (Incubation)

• Related Projects
– Apache Cocoon Portal

The Apache Portals Projects

48

Apache Pluto
• Reference Implementation of the JSR 168
• Framework for building

– A consumer (into a portal solution)
– A provider (into a framework)

• Test harness
– Startup Pluto and upload your portlets!

49

Apache WSRP4J (Incubation)
• Facilitate quick adoption of WSRP
• Framework for building

– A consumer (into a portal solution)
– A provider (into own application)

• Testing

50

Apache Portals Bridges
• Support for portlet development (JSR 168)
• Build a web app with your favorite framework

– Struts, JSF, Velocity
• Use Portal Bridges to deploy this as a portlet
• Transparent portal integration not always

possible
– Follow the provided guidelines

• Version 1.0 is released

51

Apache Portals Graffito
(Incubation)

• Framework to build content based apps
– CMS, forums, blogs etc.

• Provides JSR 168 portlets
• Features

– Taxonomy
– content versioning, fine grained access control
– collaborative editing, publication workflow
– scheduling, indexing, searching and more �

• Support for many document types
– like XML, HTML, PDF, Office

52

Apache Jetspeed 2
• Enterprise portal solution

– Supports portlet standard (JSR 168)
– Supports Portals Bridges
– Component based

• SSO
• Flexible layout (XML description)

– Template support
• Several usable portlets

– Administration and User
• AJAX Support (Desktop 2.1)
• Final Version is out!

53

Apache Cocoon Portal
• Enterprise Portal Solution

– Based on Apache Cocoon
– Portal Framework to build portals
– Supports portlet standards (JSR 168 and WSRP)
– Supports Portals Bridges
– Supports Cocoon Applications
– Component based

• Flexible layout engine (XML/XSLT) – (AJAX in
2.2)

• Powerful Event Mechanism
– Status changes
– Portlet communication

54

• Current Portal Standards
– Provide a good basis, but aren’t covering all

important parts, but will be extended

• Several Open Source Solutions
– Apache Portals (and others)
– Increasing development efforts (AJAX)

• Use standards with additional frameworks
– E.g. JSR 168 with Spring MVC Portlet

Conclusion

Thanks for your attention!

