
LDAP Stored Procedures and LDAP Stored Procedures and

Triggers arrive in ApacheDSTriggers arrive in ApacheDS

•Originally presented at ApacheCon US 2006 in Austin

•Latest presentation materials are at http://people.apache.org/~ersiner

•Presented by Ersin Er, ersiner@apache.org

ApacheDS Access Control

Administration; The X.500 Way
2

Agenda

• Stored Procedures
– Why do we need them in LDAP?

– Representing Stored Procedures

– Executing Stored Procedures

– Demos

• Triggers
– Why do we need them in LDAP?

– Model of LDAP Triggers

– Integration with LDAP Stored Procedures

– Demos (including a complete case study)

ApacheDS Access Control

Administration; The X.500 Way
3

Stored Procedures for LDAP

(Why?)

• Bulk processing

• Controlled by user

• Extending server’s capability easily

• LDAP Extended Operations?

ApacheDS Access Control

Administration; The X.500 Way
4

Model of LDAP Stored

Procedures

• Implementation technology

• Storage place

• Storage format

• Storage method

• Calling
– Parameters

– Return value

• Security

ApacheDS Access Control

Administration; The X.500 Way
5

What’s an LDAP stored

procedure?

• A piece of code

• Implemented in any technology

• Stored in the Directory Information Tree

• Represented with schema elements

• Manipulated by standard LDAP operations

(add, delete)

ApacheDS Access Control

Administration; The X.500 Way
6

Stored Procedures in ApacheDS

• “Java” scheme realization of the generic

model

• A “Java” LDAP stored procedure is

– A public static method of a Java class

– Represented by two attributes and an object class

– Stored with its class (as expected) in compiled

form (byte-code)

ApacheDS Access Control

Administration; The X.500 Way
7

DEMO 1

• Let’s load the following SP on the DIT!

public class HelloWorldpublic class HelloWorldpublic class HelloWorldpublic class HelloWorld

{{{{

public static void helloWorld()public static void helloWorld()public static void helloWorld()public static void helloWorld()

{{{{

System.out.println("Hello World!");System.out.println("Hello World!");System.out.println("Hello World!");System.out.println("Hello World!");

}}}}

}}}}

• Note: ApacheDS expects SPs under “ou=Stored
Procedures,ou=system” by default

ApacheDS Access Control

Administration; The X.500 Way
8

So we want to call it?

• Call from where?

– Client side

– Server side

• No standard SP Call operation

• For calling any LDAP stored procedure from

client side

– Use Stored Procedure Execution (Extended)

Operation

ApacheDS Access Control

Administration; The X.500 Way
9

Stored Procedure Execution

(Extended) Operation

• Name of the stored procedure

• Where to find the stored procedure (optional)

– A base search context (DistinguishedName)

– Search scope: base, one, whole (Optional)

• SP impl. language (scheme) (optional)

• Parameters (optional)

– type information (optional)

– value

ApacheDS Access Control

Administration; The X.500 Way
10

DEMO 2

• Let’s call the stored procedure

• SP name: “HelloWorld.helloWorld”

• Search context not given (it’s under the
default container)

• SP language scheme “Java” is not given, as
it’s default for ApacheDS

• No parameters (yet!)

ApacheDS Access Control

Administration; The X.500 Way
11

DEMO 3

• Let’s load the following stored procedure

• public class Greeter
• {
• public static String sayHello(String who, Integer times)
• {
• StringBuffer buffer = new StringBuffer();

• for (int i = 0; i < times.intValue(); i++)
• {
• buffer.append("Hello ");
• }

• buffer.append(who);
• buffer.append('!');

• return buffer.toString();
• }
• }

ApacheDS Access Control

Administration; The X.500 Way
12

DEMO 3 (continued)

• Let’s call the stored procedure

• Parameters
– who:String: “ApacheCon”

– times:Integer: 3

• And the return value

– An Object!

ApacheDS Access Control

Administration; The X.500 Way
13

“Java” SP execution progress

(A reflection story)

• Find the SP entry
– Use the SP name (what) and search context (where)

• Extract class name from SP name

• Load the class

• Extract method name from SP name

• Find the method in the class
– Use method name and check parameters for assignment

compatibility

• Call the method supplying parameters

• Return back the result Object

ApacheDS Access Control

Administration; The X.500 Way
14

A special SP parameter

• type: “ldapContext”

• value: A distinguished name (as a String

object)

• ApacheDS supplies a JNDI context at the

specified DN with the user’s credentials

• Why do we need it?

ApacheDS Access Control

Administration; The X.500 Way
15

DEMO 4

• Let’s do a real world example

• With delete operation a single entry can be deleted

at once

• It’s a common requirement to delete a subtree at

once

• There is an delete operation control for this

• But let’s write our own DelSubtree, load and call it

ApacheDS Access Control

Administration; The X.500 Way
16

Security Issues

• Directory operations on stored procedures

– Who can do what on stored procedures

• Permissions used during execution

– Executor’s verses owner’s

• Authorization for executing stored

procedures

• Stored procedures’ capabilities within the

server

ApacheDS Access Control

Administration; The X.500 Way
17

Security Issues and ApacheDS

• Stored procedures

– are standard user objects

– any operation on them is possible

– and subject to access control

• Stored procedures are executed with executor’s

permissions

• Currently, who is authorized to read an SP is also

authorized to execute it

• Currently, execution is not sandboxed

ApacheDS Access Control

Administration; The X.500 Way
18

Stored Procedures - Briefly

• LDAP stored procedures allow users to

effectively define their own extended

operations without requiring any server

software extensions

ApacheDS Access Control

Administration; The X.500 Way
19

Triggers for LDAP (Why?)

• Tracking DN references (referential integrity)

• Custom action needs upon some operations

on some entries (logging, firing an external

process)

• Existing solutions lacks some capabilities or

are hard to use (e.g. requires server side plug-

ins)

• It’s better to keep it simple and powerful ;-)

ApacheDS Access Control

Administration; The X.500 Way
20

A Trigger

<Trigger Specification> :

<Action Time>

<Trigger Event>

<Triggered Action>

ApacheDS Access Control

Administration; The X.500 Way
21

An LDAP Trigger

• Action Time: AFTER

• Trigger Event: Change inducing LDAP operations

• Triggered Action: LDAP Stored Procedures!

• Which entries is a trigger defined on?
– A specific entry

– Trigger Execution Domains

• All these information are stored as regular schema
objects (so can be browsed, replicated, etc.)

ApacheDS Access Control

Administration; The X.500 Way
22

Trigger Specification Examples

• AFTER Delete

CALL “BackupUtilities.backupDeletedEntry”

($ldapContext(“”),$name,$deletedEntry)

• AFTER Add

CALL “Logger.logAddOperation”

($entry,$attributes,$operationPrincipal)

ApacheDS Access Control

Administration; The X.500 Way
23

Stored Procedures – Triggers

Integration

• SPs can be suplied parameters like:

– operation specific standard request parameters ($entry for

Add, $name for Delete, ...)

– operation specific usefull parameters ($deletedEntry for

Delete, ...)

– generic parameters ($ldapContext, $operationPrincipal, ...)

• All available parameters have predefined

corresponding Java types

• SP call options are supported as specified in the SP

Execution Operation

ApacheDS Access Control

Administration; The X.500 Way
24

DEMO 1

• Let’s backup an entry when it’s deleted

• Write a Java stored procedure and load it

• Put an entryTriggerSpecification attribute

in an entry
– AFTER Delete

– CALL “BackupUtilities.backupDeletedEntry”

– ($ldapContext(“”),$name,$deletedEntry)

ApacheDS Access Control

Administration; The X.500 Way
25

Was it impressive?

• Not very much!

• The trigger was effective only on a single entry

• And even our trigger specification has been deleted!

• Well, the trigger specification might be effective in

the new location of the entry too

– What if the entry is deleted from the backup context?

– Has anyone said infinite loop?

ApacheDS Access Control

Administration; The X.500 Way
26

Trigger Execution Domains (DACD)

• X.500 Subentries and subtreeSpecification
– A Subentry holds a subtreeSpecification attribute

– subtreeSpecification allows specifying a subtree of entries with chop
specifications and refinements

– Other attributes in the Subentry are applied to the selection of entries

– A building block of X.500 Administrative Model

– RFC 3672 - Subentries in the Lightweight Directory Access Protocol

• Trigger Execution Domains

– Instead of entryTriggerSpecification,

– use prescriptiveTriggerSpecification in triggerExecutionSubentry

– to define triggers on a set of entries

ApacheDS Access Control

Administration; The X.500 Way
27

X.500 Administrative Model

Entries
Subentries

Subentry

RDN
attribute

subtreeSpecification
attribute

objectClass
attribute

(has
subentry, ...)

Attributes to be applied
to the entries in the
subtree (refinement)

Inside a Subentry

Administrative Entry

ApacheDS Access Control

Administration; The X.500 Way
28

X.500 Administrative Model –

Trigger Execution Aspect

Entries Trigger
Execution
Subentries

Trigger Execution
Subentry

RDN
attribute

subtreeSpecification
attribute of Trigger
Execution Domain

objectClass attribute

(has subentry and
triggerExecutionSubentry

)

prescriptiveTrigger-
Specifications to be

applied to the
entries in the Trigger
Execution Domain

Inside a Trigger Execution Subentry

Trigger Execution
Administrative Entry

ApacheDS Access Control

Administration; The X.500 Way
29

What can be specified
(How a TED can be specified)

with a subtreeSpecification ? (1)

Administrative Point

subtreeSpecification= { }

ApacheDS Access Control

Administration; The X.500 Way
30

What can be specified
(How a TED can be specified)

with a subtreeSpecification ? (2)

Administrative Point

subtreeSpecification=

{ base “ou=A” }

ou=A

ApacheDS Access Control

Administration; The X.500 Way
31

What can be specified
(How a TED can be specified)

with a subtreeSpecification ? (3)

Administrative Point

subtreeSpecification=

{ specificExclusions { chopAfter: “ou=A” } }

ou=A

ApacheDS Access Control

Administration; The X.500 Way
32

What can be specified
(How a TED can be specified)

with a subtreeSpecification ? (4)

Administrative Point

subtreeSpecification=

{ specificExclusions { chopBefore: “ou=A” } }

ou=A

ApacheDS Access Control

Administration; The X.500 Way
33

What can be specified
(How a TED can be specified)

with a subtreeSpecification ? (5)

Administrative Point

subtreeSpecification=

{ base “ou=A”, minimum 1, maximum 3 }

ou=A

ApacheDS Access Control

Administration; The X.500 Way
34

What can be specified
(How a TED can be specified)

with a subtreeSpecification ? (6)

Administrative Point

subtreeSpecification=

{ specificationFilter item:student }

ApacheDS Access Control

Administration; The X.500 Way
35

What can be specified
(How a TED can be specified)

with a subtreeSpecification ? (7)

Administrative Point

subtreeSpecification=

{ specificationFilter or: { item:student, item:faculty } }

ApacheDS Access Control

Administration; The X.500 Way
36

DEMO 2 (Extensive)

• Think about mail lists whose configurations

are stored in a directory

• Mail list members can be added/removed

manually, or according to specific conditions

like being in a specific subtree (or not)

• If a mail list member (likely a person’s entry)

is deleted from DIT, it should also be

unsubscribed from the lists it was member of

ApacheDS Access Control

Administration; The X.500 Way
37

dc=example,dc=comdc=example,dc=com

ou=Peopleou=People ou=Mailing Listsou=Mailing Lists

ou=Managersou=Managers ou=Engineersou=Engineers

cn=Jimcn=Jim

cn=Johncn=John

cn=Bencn=Ben

cn=Bobcn=Bob

cn=Board

member: cn=Jim,ou=Managers,...

member: cn=John,ou=Managers,...

...

cn=Board

member: cn=Jim,ou=Managers,...

member: cn=John,ou=Managers,...

...

cn=Project Vista

member: cn=John,...

member: cn=Bob,...

cn=Project Vista

member: cn=John,...

member: cn=Bob,...

Sample LDAP Tree

ApacheDS Access Control

Administration; The X.500 Way
38

Requirements

1. If any person entry under ou=Managers,ou=People
is created (Add), add it to the Board list

2. If any person entry under ou=People is deleted,
remove it from all lists

3. If any person entry is renamed under ou=People,
correct membership registries in all lists

4. If any person entry is moved to
ou=Managers,ou=People, add it to the Board list

5. If any person entry is moved from ou=People (to
say ou=Fired subtree), remove it from all lists

ApacheDS Access Control

Administration; The X.500 Way
39

Implementation of Requirement 1

Stored procedure
public static void subscribeAddedManagerToBoardList(

LdapContext ctx,

Name addedEntryName) throws NamingException

{

String boardMailListCtxName =

"cn=Board," + mailListsCtxName;

Attributes newMember = new BasicAttributes(

"member",

addedEntryName.toString(),

true);

ctx.modifyAttributes(

boardMailListCtxName,

DirContext.ADD_ATTRIBUTE,

newMember);

}

ApacheDS Access Control

Administration; The X.500 Way
40

Implementation of Requirement 1

subtreeSpecification

• A subtreeSpecification added in a

triggerExecutionSubentry subordinate to the

domain root

• { base “ou=Managers,ou=People”,

specificationFilter item:person }

ApacheDS Access Control

Administration; The X.500 Way
41

Implementation of Requirement 1

prescriptiveTriggerSpecification

AFTER Add

CALL “MailListManager.

subscribeAddedManagerToBoardList”

($ldapContext(“”), $entry)

ApacheDS Access Control

Administration; The X.500 Way
42

To ease the remaining tasks...

• subtreeSpecifications can be reused in the

same subtentry as the

prescriptiveTriggerSpecification attribute is

multi-valued

• Stored procedures can be collected in the

same class and can use each other

ApacheDS Access Control

Administration; The X.500 Way
43

What’s coming next?

• BEFORE, INSTEADOF Triggers

• Mutable parameters for stored procedure

called from Triggers

LDAP Stored Procedures and LDAP Stored Procedures and

Triggers arrive in ApacheDSTriggers arrive in ApacheDS

•Originally presented at ApacheCon US 2006 in Austin

•Latest presentation materials are at http://people.apache.org/~ersiner

•Presented by Ersin Er, ersiner@apache.org

