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Agenda

• Stored Procedures
– Why do we need them in LDAP?

– Representing Stored Procedures

– Executing Stored Procedures

– Demos

• Triggers
– Why do we need them in LDAP?

– Model of LDAP Triggers

– Integration with LDAP Stored Procedures

– Demos (including a complete case study)
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Stored Procedures for LDAP 

(Why?)

• Bulk processing

• Controlled by user

• Extending server’s capability easily

• LDAP Extended Operations?
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Model of LDAP Stored 

Procedures

• Implementation technology

• Storage place

• Storage format

• Storage method

• Calling
– Parameters

– Return value

• Security



ApacheDS Access Control 

Administration; The X.500 Way
5

What’s an LDAP stored 

procedure?

• A piece of code

• Implemented in any technology

• Stored in the Directory Information Tree

• Represented with schema elements

• Manipulated by standard LDAP operations 

(add, delete)
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Stored Procedures in ApacheDS

• “Java” scheme realization of the generic 

model

• A “Java” LDAP stored procedure is

– A public static method of a Java class

– Represented by two attributes and an object class

– Stored with its class (as expected) in compiled 

form (byte-code)
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DEMO 1

• Let’s load the following SP on the DIT!

public class HelloWorldpublic class HelloWorldpublic class HelloWorldpublic class HelloWorld

{{{{

public static void helloWorld()public static void helloWorld()public static void helloWorld()public static void helloWorld()

{{{{

System.out.println( "Hello World!" );System.out.println( "Hello World!" );System.out.println( "Hello World!" );System.out.println( "Hello World!" );

}}}}

}}}}

• Note: ApacheDS expects SPs under “ou=Stored 
Procedures,ou=system” by default
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So we want to call it?

• Call from where?

– Client side

– Server side

• No standard SP Call operation

• For calling any LDAP stored procedure from 

client side

– Use Stored Procedure Execution (Extended) 

Operation
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Stored Procedure Execution 

(Extended) Operation

• Name of the stored procedure

• Where to find the stored procedure (optional)

– A base search context (DistinguishedName)

– Search scope: base, one, whole (Optional)

• SP impl. language (scheme) (optional)

• Parameters (optional)

– type information (optional)

– value
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DEMO 2

• Let’s call the stored procedure

• SP name: “HelloWorld.helloWorld”

• Search context not given (it’s under the 
default container)

• SP language scheme “Java” is not given, as 
it’s default for ApacheDS

• No parameters (yet!)
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DEMO 3

• Let’s load the following stored procedure

• public class Greeter
• {
• public static String sayHello( String who, Integer times )
• {
• StringBuffer buffer = new StringBuffer();

• for ( int i = 0; i < times.intValue(); i++ )
• {
• buffer.append( "Hello " );
• }

• buffer.append( who );
• buffer.append( '!' );

• return buffer.toString();
• }
• }
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DEMO 3 (continued)

• Let’s call the stored procedure

• Parameters
– who:String: “ApacheCon”

– times:Integer: 3

• And the return value

– An Object!
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“Java” SP execution progress

(A reflection story)

• Find the SP entry
– Use the SP name (what) and search context (where)

• Extract class name from SP name

• Load the class

• Extract method name from SP name

• Find the method in the class
– Use method name and check parameters for assignment 

compatibility

• Call the method supplying parameters

• Return back the result Object
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A special SP parameter

• type: “ldapContext”

• value: A distinguished name (as a String 

object)

• ApacheDS supplies a JNDI context at the 

specified DN with the user’s credentials

• Why do we need it?
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DEMO 4

• Let’s do a real world example

• With delete operation a single entry can be deleted 

at once

• It’s a common requirement to delete a subtree at 

once

• There is an delete operation control for this

• But let’s write our own DelSubtree, load and call it
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Security Issues

• Directory operations on stored procedures

– Who can do what on stored procedures

• Permissions used during execution

– Executor’s verses owner’s

• Authorization for executing stored 

procedures

• Stored procedures’ capabilities within the 

server
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Security Issues and ApacheDS

• Stored procedures

– are standard user objects

– any operation on them is possible

– and subject to access control

• Stored procedures are executed with executor’s 

permissions

• Currently, who is authorized to read an SP is also 

authorized to execute it

• Currently, execution is not sandboxed
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Stored Procedures - Briefly

• LDAP stored procedures allow users to

effectively define their own extended 

operations without requiring any server 

software extensions
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Triggers for LDAP (Why?)

• Tracking DN references (referential integrity)

• Custom action needs upon some operations 

on some entries (logging, firing an external 

process)

• Existing solutions lacks some capabilities or 

are hard to use (e.g. requires server side plug-

ins)

• It’s better to keep it simple and powerful ;-)
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A Trigger

<Trigger Specification> :

<Action Time>

<Trigger Event>

<Triggered Action>
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An LDAP Trigger

• Action Time: AFTER

• Trigger Event: Change inducing LDAP operations

• Triggered Action: LDAP Stored Procedures!

• Which entries is a trigger defined on?
– A specific entry

– Trigger Execution Domains

• All these information are stored as regular schema 
objects (so can be browsed, replicated, etc.)
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Trigger Specification Examples

• AFTER Delete

CALL “BackupUtilities.backupDeletedEntry”

($ldapContext(“”),$name,$deletedEntry)

• AFTER Add

CALL “Logger.logAddOperation”

($entry,$attributes,$operationPrincipal)
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Stored Procedures – Triggers 

Integration

• SPs can be suplied parameters like:

– operation specific standard request parameters ($entry for 

Add, $name for Delete, ...)

– operation specific usefull parameters ($deletedEntry for 

Delete, ...)

– generic parameters ($ldapContext, $operationPrincipal, ...)

• All available parameters have predefined 

corresponding Java types

• SP call options are supported as specified in the SP 

Execution Operation
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DEMO 1

• Let’s backup an entry when it’s deleted

• Write a Java stored procedure and load it

• Put an entryTriggerSpecification attribute 

in an entry
– AFTER Delete

– CALL “BackupUtilities.backupDeletedEntry”

– ($ldapContext(“”),$name,$deletedEntry)
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Was it impressive?

• Not very much!

• The trigger was effective only on a single entry

• And even our trigger specification has been deleted!

• Well, the trigger specification might be effective in 

the new location of the entry too

– What if the entry is deleted from the backup context?

– Has anyone said infinite loop?
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Trigger Execution Domains (DACD)

• X.500 Subentries and subtreeSpecification
– A Subentry holds a subtreeSpecification attribute

– subtreeSpecification allows specifying a subtree of entries with chop 
specifications and refinements

– Other attributes in the Subentry are applied to the selection of entries

– A building block of X.500 Administrative Model

– RFC 3672 - Subentries in the Lightweight Directory Access Protocol

• Trigger Execution Domains

– Instead of entryTriggerSpecification,

– use prescriptiveTriggerSpecification in triggerExecutionSubentry

– to define triggers on a set of entries
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X.500 Administrative Model

Entries
Subentries

Subentry

RDN 
attribute

subtreeSpecification 
attribute

objectClass 
attribute

(has 
subentry, ...)

Attributes to be applied 
to the entries in the 
subtree (refinement)

Inside a  Subentry

Administrative Entry
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X.500 Administrative Model –

Trigger Execution Aspect

Entries Trigger 
Execution 
Subentries

Trigger Execution 
Subentry

RDN 
attribute

subtreeSpecification
attribute of Trigger 
Execution Domain

objectClass attribute

(has subentry and 
triggerExecutionSubentry

)

prescriptiveTrigger-
Specifications to be 

applied to the 
entries in the Trigger 
Execution Domain

Inside a Trigger Execution Subentry

Trigger Execution 
Administrative Entry
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What can be specified
(How a TED can be specified)

with a subtreeSpecification ? (1)

Administrative Point

subtreeSpecification= { }
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What can be specified
(How a TED can be specified)

with a subtreeSpecification ? (2)

Administrative Point

subtreeSpecification=

{ base “ou=A” }

ou=A
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What can be specified
(How a TED can be specified)

with a subtreeSpecification ? (3)

Administrative Point

subtreeSpecification=

{ specificExclusions { chopAfter: “ou=A” } }

ou=A
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What can be specified
(How a TED can be specified)

with a subtreeSpecification ? (4)

Administrative Point

subtreeSpecification=

{ specificExclusions { chopBefore: “ou=A” } }

ou=A
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What can be specified
(How a TED can be specified)

with a subtreeSpecification ? (5)

Administrative Point

subtreeSpecification=

{ base “ou=A”, minimum 1, maximum 3 }

ou=A
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What can be specified
(How a TED can be specified)

with a subtreeSpecification ? (6)

Administrative Point

subtreeSpecification=

{ specificationFilter item:student }
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What can be specified
(How a TED can be specified)

with a subtreeSpecification ? (7)

Administrative Point

subtreeSpecification=

{ specificationFilter or: { item:student, item:faculty } }
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DEMO 2 (Extensive)

• Think about mail lists whose configurations 

are stored in a directory

• Mail list members can be added/removed 

manually, or according to specific conditions 

like being in a specific subtree (or not)

• If a mail list member (likely a person’s entry) 

is deleted from DIT, it should also be 

unsubscribed from the lists it was member of
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dc=example,dc=comdc=example,dc=com

ou=Peopleou=People ou=Mailing Listsou=Mailing Lists

ou=Managersou=Managers ou=Engineersou=Engineers

cn=Jimcn=Jim

cn=Johncn=John

cn=Bencn=Ben

cn=Bobcn=Bob

cn=Board

member: cn=Jim,ou=Managers,...

member: cn=John,ou=Managers,...

...

cn=Board

member: cn=Jim,ou=Managers,...

member: cn=John,ou=Managers,...

...

cn=Project Vista

member: cn=John,...

member: cn=Bob,...

cn=Project Vista

member: cn=John,...

member: cn=Bob,...

Sample LDAP Tree
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Requirements

1. If any person entry under ou=Managers,ou=People 
is created (Add), add it to the Board list

2. If any person entry under ou=People is deleted, 
remove it from all lists

3. If any person entry is renamed under ou=People, 
correct membership registries in all lists

4. If any person entry is moved to 
ou=Managers,ou=People, add it to the Board list

5. If any person entry is moved from ou=People (to 
say ou=Fired subtree), remove it from all lists
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Implementation of Requirement 1

Stored procedure
public static void subscribeAddedManagerToBoardList(

LdapContext ctx,

Name addedEntryName ) throws NamingException

{

String boardMailListCtxName =

"cn=Board," + mailListsCtxName;

Attributes newMember = new BasicAttributes(

"member",

addedEntryName.toString(),

true );

ctx.modifyAttributes(

boardMailListCtxName,

DirContext.ADD_ATTRIBUTE,

newMember );

}
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Implementation of Requirement 1

subtreeSpecification

• A subtreeSpecification added in a 

triggerExecutionSubentry subordinate to the 

domain root

• { base “ou=Managers,ou=People”,

specificationFilter item:person }
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Implementation of Requirement 1

prescriptiveTriggerSpecification

AFTER Add

CALL “MailListManager. 

subscribeAddedManagerToBoardList”

($ldapContext(“”), $entry)
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To ease the remaining tasks...

• subtreeSpecifications can be reused in the 

same subtentry as the 

prescriptiveTriggerSpecification attribute is 

multi-valued

• Stored procedures can be collected in the 

same class and can use each other
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What’s coming next?

• BEFORE, INSTEADOF Triggers

• Mutable parameters for stored procedure 

called from Triggers
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