
Apache Performance Tuning

Part Two: Scaling Out

Sander Temme
sander@temme.net

May 30, 2006

Abstract

As your web site grows in popularity, you will get to the point when
one server doesn’t cut it anymore. You need to add more boxes, and
this session discusses several approaches to scaling out. We will cover
webserver load balancing, SSL offload and separating application tiers.
We will also discuss configuring the Apache HTTP Server to front Apache
Tomcat servers and how to load balance between Tomcat servers. Finally,
we will cover Java VM and database tuning.

1 Introduction

Building out a web server infrastructure is a large and diverse field. The server
infrastructure for any large web site is to a large extent customized for the needs
and requirements of that site and it is very hard to make valid general statements
about scaling technologies. This paper and its accompanying ApacheCon pre-
sentation aim to give a general overview of the field, touching upon approaches
and technologies rather than discussing them in depth.

1.1 Why Would You Scale Out?

Scaling Out is a business decision. You may scale out because you can not meet
your performance goals with a single web server. Alternatively, you may scale
out to meet reliability and uptime goals. There are many approaches to scaling
out, with varying price tags. So whatever your motivation, to scale out your
web infrastructure you will have to justify added expenses for server hardware,
network equipment, possibly software licenses and maintenance contracts, and
most certainly system administration time and resources. Very few of us have
the above thrown our way without a defined business need.

1

2 Building Out: Load Balancing

Scaling Out means adding more servers. The question when adding servers to
your infrastructure is how to direct client transactions to multiple hosts. The
user does not know and should not care that multiple servers are in use. They
just want to point their browser to www.example.com and spend a lot of money
on your products or services. In this section we will review several techniques
to distribute client transactions across your hosts.

2.1 Load Balancing with DNS

You have a great deal of control over where your users direct their transactions
by using the Domain Name Service (DNS) for your site. This seems obvious,
but it has to be mentioned. When your users connect to www.example.com,
they don’t care to which IP address this resolves. If you can manipulate this
resolution, you can send the user to whichever physical server you prefer.

2.1.1 Distinct Servers for Distinct Services

One way to distribute transaction load across multiple physical servers is to give
each server a separate task. For your www.example.com site, use an images.example.com
server to serve static image content, a secure.example.com server to handle
SSL transactions, etc. This approach allows you to tune each server for its spe-
cialized task. The downside is that this approach does not scale by itself: once,
for instance, your secure server runs out of processing headroom, you will have
to add more machines using one of the techniques described below.

2.1.2 DNS Round-Robin

If you operate multiple servers that perform identical functions, you can dis-
tribute client transactions among them using Domain Name Server Round-
Robin. The principle behind this technique is that a single server hostname
resolves to a different IP address from your server pool for each DNS resolution
request. For instance, if you have three web servers with the IP addresses

10.11.0.113
10.11.0.114
10.11.0.115

and you have your name server return each of those addresses in turn for
queries to your web server name (www.scalingout.org), roughly one third of
all clients will connect to each of your web servers. Since popular name server
implementations like bind implement this technique by default, it is very simple
to implement without any resource requirements besides control over your DNS
zone.

How “roughly” this works depends on many factors, over few of which you
have any control. Client-side resolvers cache query reponses, as do intermediate

2

nameservers at ISPs and corporations. Large ISPs and corporations represent
many potential users, all of whom would be directed to the same web server for
as long as their nameserver caches the original lookup. However, across your
entire user population these discrepancies may even out. You can help this
process by reducing the cache timeout for query results in your zone file. An
example zone file that uses DNS Round-Robin is shown in Appendix A.

DNS Round-Robin as a load balancing approach is often disparaged because
of its simplicity: it does not take into account the load on the servers, and can
not compensate for server outage. If a server goes down for whatever reason,
one third of all clients will still be directed to the nonfunctional server. If these
considerations are important to you, consider one of the more sophisticated load
balancing approaches described below. However, do not dismiss DNS Round-
Robin out of hand. Depending on your requirements, it may be all you need.

2.2 Peer-based Load Balancing

You can turn a collection of individual servers into a cluster by using load
balancing techniques. In this section we will discuss Microsoft’s approach.

2.2.1 Windows Network Load Balancing

Windows Load Balancing Service (WLBS) technology has been available since
Windows NT Server 4.0, Enterprise Edition and is now included in Windows
Server 2003 under the name Network Load Balancing (NLB). Using Network
Load Balancing, you can turn up to 32 servers into a cluster. The service work
by having every machine assume the same IP address, and the same MAC ad-
dress, on the clustered interface(s). Incoming connections arrive at all members
of the cluster simultaneously from the network switch. The NLB software com-
municates between cluster members over a unicast or multicast backchannel
and is responsible for the load balancing decisions. It sits between the network
card driver and the TCP/IP stack, and regulates which cluster member gets to
answer each incoming request. Cluster members whose NLB module doesn’t
communicate with the other members get removed from the pool. This allows
NLB to provide High Availability as well as load balancing functionality.

Because it operates below the TCP/IP layer, Network Load Balancing should
be compatible with any service that runs on the server machines. Each cluster
member has to be configured exactly the same. Please see your Windows Server
2003 documentation for details.

2.3 Load Balancing Appliance

The market for dedicated load balancing appliances is now quite crowded, with
offerings from vendors like Cisco, F5, Juniper, Foundry and many others vying
for your attention. These products tend to be pricy, but very powerful solutions
to load balance your server farm.

3

2.3.1 How a Load Balancer Works

Load balancing appliances or application switches sit between the web servers
and the outbound network connection and intelligently distribute traffic across
multiple web servers. They typically keep track of the load and availability of the
servers, and adjust their load balancing decisions accordingly. Many of these
products can operate on several layers of the network stack and can inspect
incoming requests to make load balancing decisions based on source address,
requested URI, cookies submitted etc.

2.3.2 Linux Virtual Server

The Linux Virtual Server project is an open source load balancing and high
availability implementation. Its core module, IP Virtual Server, is included in
the kernel as of version 2.6.10. Auxiliary software like ipvsadm is only an install
away. If you are considering rolling your own load balancing solution, consider
Linux Virtual Server.

The primary disadvantage of Linux Virtual Server is that it does not come
as a nice, shiny plug-and-play box with a support contract. Instead, it looks
more like an Erector Set1 of bits and pieces that you get to integrate yourself.
However, this disadvantage can also be a strength: it allows you to build a
solution that best fits your needs. However, the absence of a 24x7 support plan
may upset your decision makers. You can find an example configuration for
Linux Virtual Server in Appendix B.

3 Building Out: Separate Tiers

Most web applications can be separated into multiple distinct tiers:

1. Web server tier(Apache, IIS, Sun ONE)

2. Application server tier (Tomcat, PHP, WebLogic, etc.)

3. Database server tier (MySQL, Oracle, Postgres, etc.)

Every tier has distinct and particular performance requirements. Moving
each tier to their own hardware allows you to tune and scale them individually.
The fact that all of the individual applications communicate with each other
over TCP/IP already makes this move even easier.

The Web Server tier communicates directly with the users. It is respon-
sible for maintaining connection with a wide variety of client browsers across
potentially slow and far-flung connections. This causes a markedly different
load on the operating system TCP stack than the long-lived, local, high speed
connections between web and application server, and between application server
and the database. The web tier can also be configured to serve the application’s

1Perhaps better known in Europe as Meccano

4

static content: HTML pages, images, JavaScript, etc. It passes only the re-
quests for dynamically generated content (PHP scripts, JavaServer Pages, RSS
feeds) on to the application tier. The type of server used for this tier typically
has one or two CPUs and enough memory to fit the requisite number of httpd
processes. Storage is not a concern.

The Application Server tier generates all dynamic content. It receives
requests from the web tier and maintains connections to the database tier. The
operating system can be tuned specifically to run an application server platform
such as a Java virtual machine. The type of server used for this tier may
have multiple CPUs as required to run application threads. These servers have
more memory than the web servers as required by the application platform, but
storage is not important on this tier.

The Database Server tier stores all application data. The application
server tier connects to the database tier using the JDBC protocol or native
database libraries. Database access can be a considerable bottleneck for appli-
cation performance, so performance is an important consideration for this tier.
The type of server used for this tier should have sufficient CPU power and RAM
to run the database application, and come with scalable, redundant storage like
a RAID-5 array.

4 Designing Your Site for Scaling Out

4.1 Designing for a Load Balancer

A Load Balancer introduces an additional moving part to your web server infras-
tructure. While most load balancer solutions do their best to appear transpar-
ent to the application, you may find some issues that you can solve by properly
designing your application.

The main issue arises with session persistence. The HTTP protocol is inher-
ently stateless, which is great for a load balancer: it can consider each incoming
request for itself and make a completely independent load balancing decision
based on its criteria. Session persistence potentially complicates this issue, es-
pecially if a user’s session exists only on the server that initially created it. If
a subsequent request from that user is directed to a different backend server,
the session is lost. Most load balancing solutions solve this problem by con-
sistently directing requests from a particular IP address to the same backend
server. Some can inspect incoming HTTP requests and make load balancing
decisions based on session cookies.

These load balancer based fixes should be enough under most circumstances,
but your requirements may be more stringent: what if the user reconnects after
a long time and the load balancer has timed out its IP based persistence? Or the
user reconnects from a different IP address (let’s say she left one Starbucks and
reconnects from the one across the street)? Or the server that holds the user’s
session goes offline because of a crash or maintenance? If it is important to
you to maintain user sessions under circumstances like these, you should build

5

session persistence into your application. Users sessions are likely to cause
more reads than writes. You could write session information to your backend
database, or use a special, fast database with a write-through cache just for
session maintenance.

5 Conclusion

Scaling out your web site is a mixed blessing. While you get to serve more trans-
actions and, presumably, do more business, the additional hardware, software
and network segments will also give you more problems. You get to manage,
maintain en secure a farm of servers instead of just one. The configuration of
your servers, and application software and content design will be highly influ-
enced by the infrastructure design decisions you make, and they will be heavily
intertwined. By the time your are done with this, you will know far more than
a general paper or conference session can ever address.

A DNS Round-Robin Zone File

The following is a very basic DNS Zone file that uses Round-Robin DNS to
balance three web servers.

scalingout.org. 86400 IN SOA ns.scalingout.org. sctemme.scalingout.org. (
2006051401 ; Serial
86400 ; refresh (1 day)
7200 ; retry (2 hours)
8640000 ; expire (10 days)
86400) ; minimum (1 day)

scalingout.org. IN NS bagheera.scalingout.org.

gw IN A 10.11.0.1
bagheera IN A 10.11.0.2

; ...

mail IN CNAME bagheera
ns IN CNAME bagheera

www IN A 10.11.0.113
IN A 10.11.0.114
IN A 10.11.0.115

6

B Linux Virtual Server Configuration

This example uses a Linux Virtual Server director running Ubuntu 5.10 (The
Breezy Badger). The outside interface of the Director has IP address 10.0.0.1,
its inside interface is on 192.168.1.1. Two backend web servers are connected to
an internal interface of the Director. Their Ethernet interfaces are configured
for 192.168.1.2 and 192.168.1.3 respectively, and both have 192.168.1.1 for de-
fault gateway. On the Director machine, the file /etc/ipvsadm.rules has the
following information:

ipvsadm.rules
-A -t 10.0.0.1:80 -s rr
-a -t 10.0.0.1:80 -r 192.168.1.2:8080 -m -w 1
-a -t 10.0.0.1:80 -r 192.168.1.3:8080 -m -w 1

and the file /etc/defaults/ipvsadm looks as follows:

Do not edit! Use ’dpkg-reconfigure ipvsadm’.
AUTO="true"
DAEMON="none"

The tool mentioned in the comment has interactive menus for the two vari-
ables. This is all the configuration necessary to run Linux Virtual Server in
NAT mode: a reboot or the command /etc/init.d/ipvsadm start issued as
root starts the load balancer.

7

