
Apache Performance Tuning

Part One: Scaling Up

Sander Temme
sander@temme.net

May 30, 2006

Abstract

The Apache HTTP Server powers some of the busiest sites in the
world, so when your web site takes off and becomes popular, you’re in good
hands when you use Apache. This session covers tuning the Apache HTTP
Server for performance. We will discuss server performance monitoring
and benchmarking. Then we will cover configuration options that affect
performance, system sizing and operating system tuning. Finally, we will
discuss caching dynamic content with mod cache.

1 Introduction

The Performance Tuning page in the Apache 1.3 documentation says1:

“Apache is a general webserver, which is designed to be correct first,
and fast second. Even so, its performance is quite satisfactory. Most
sites have less than 10Mbits of outgoing bandwidth, which Apache
can fill using only a low end Pentium-based webserver.”

However, that sentence was written a few years ago, and in the meantime
several things have happened. On one hand, web server hardware has become
much faster. On the other hand, many sites now are allowed much more than
ten megabits per second of outgoing bandwidth. In addition, web applications
have become more complex. The classic brochureware site is alive and well,
but the web has grown up substantially as a computing application platform
and webmasters may find themselves running dynamic content in Perl, PHP or
Java, all of which take a toll on performance.

Therefore, in spite of strides forward in machine speed and bandwidth al-
lowances, web server performance and web application performance remain ar-
eas of concern. In this paper and the ApacheCon Europe 2006 session2 it ac-
companies, several aspects of web server performance will be discussed.

1http://httpd.apache.org/docs/misc/perf-tuning.html
2http://www.eu.apachecon.com/konferenzen/psecom,id,488,track,3,nodeid,, language,uk.html#session-

fr4

1

1.1 What Will and Will Not Be Discussed

The session will focus on easily accessible configuration and tuning options for
Apache 1.3 and 2 as well as monitoring tools. Monitoring tools will allow you
to observe your web server to gather information about its performance, or
lack thereof. We’ll assume that you don’t have an unlimited budget for server
hardware, so the existing infrastructure will have to do the job. You have
no desire to compile your own Apache, or to recompile the operating system
kernel. We do assume, though, that you have some familiarity with the Apache
configuration file.

2 Monitoring Your Server

The first task when sizing or performance-tuning your server is to find out how
your system is currently performing. By monitoring your server under real-world
load, or artificially generated load, you can extrapolate its behavior under stress,
such as when your site is mentioned on Slashdot.

2.1 Monitoring Tools

2.1.1 top

The top tool ships with Linux and FreeBSD, and can be downloaded for Solaris3.
It collects a bunch of statistics for the system and for each running process, then
displays them interactively on your terminal. The data displayed is refreshed
every second and varies by platform, but typically includes system load average,
number of processes and their current states, the percent CPU(s) time spent
executing user and system code, and the state of the virtual memory system.
The data displayed for each process is typically configurable and includes its
process name and ID, priority and nice values, memory footprint, and percentage
CPU usage.

Top is a wonderful tool even though it’s slightly resource intensive (when
running, its own process is usually in the top ten CPU gluttons). It is indis-
pensable in determining the size of a running process, which comes in handy for
‘Generating A Test Load’ described below. Top is, however, an interactive tool
and running it continuously has few if any advantages.

2.1.2 free

This command is only available on Linux. It shows how much memory and swap
space is in use. Linux allocates unused memory as file system cache. The free
command shows usage both with and without this cache. The free command
can be used to find out how much memory the operating system is using, as
described in the paragraph ‘Sizing MaxClients’ below. The output of free looks
like this:

3http://www.sunfreeware.com/

2

[sctemme@GayDeceiver sctemme]$ free total used free shared buffers

cached

Mem: 254412 49140 205272 0 6004 28480

-/+ buffers/cache: 14656 239756

Swap: 511992 0 511992

2.1.3 vmstat

This command is available on many unix platforms. It displays a large number
of operating system metrics. Run without argument, it displays a status line for
that moment. When a numeric argument is added, the status is redisplayed at
designated intervals. For example, vmstat 5 causes the information to reappear
every five seconds. Vmstat displays the amount of virtual memory in use, how
much memory is swapped in and out each second, the number of processes
currently running and sleeping, the number of interrupts and context switches
per second and the usage percentages of the CPU.

The following is vmstat output of an idle server:
[sctemme@GayDeceiver sctemme]$ vmstat 5 3 procs memory swap io system

cpu

r b w swpd free buff cache si so bi bo in cs us sy id 0 0 0 0 186252

6688 37516 0 0 12 5 47 311 0 1 99 0 0 0 0 186244 6696 37516 0 0 0 16

41 314 0 0 100 0 0 0 0 186236 6704 37516 0 0 0 9 44 314 0 0 100

And this is output of a server that is under a load of one hundred simulta-
neous connections fetching static content:
[sctemme@GayDeceiver sctemme]$ vmstat 5 3 procs memory swap io system

cpu

r b w swpd free buff cache si so bi bo in cs us sy id 1 0 1 0 162580

6848 40056 0 0 11 5 150 324 1 1 98 6 0 1 0 163280 6856 40248 0 0 0 66

6384 1117 42 25 32

11 0 0 0 162780 6864 40436 0 0 0 61 6309 1165 33 28 40

The first line gives averages since the last reboot. The subsequent lines
give information for five second intervals. The second argument tells vmstat to
generate three reports and then exit.

2.1.4 SE Toolkit

The SE Toolkit is a system monitoring toolkit for Solaris. Its programming
language is based on the C preprocessor and comes with a number of sample
scripts. This toolkit is discussed in [6].

The SE Toolkit has drifted around for a while and has had several owners
since its inception. It seems that it has now found a final home at Sunfree-
ware.com4, where it can be downloaded at no charge. There is a single package
for Solaris 8, 9 and 10 on SPARC and x86, and includes source code. SE Toolkit
author Richard Pettit has started a new company, Captive Metrics5 that plans
to bring to market a multiplatform monitoring tool built on the same principles
as SE Toolkit, written in Java.

4http://www.sunfreeware.com/setoolkit.htm
5http://www.setoolkit.com/

3

Level Description
emerg Emergencies - system is unusable.
alert Action must be taken immediately.
crit Critical Conditions.
error Error conditions.
warn Warning conditions.
notice Normal but significant condition.
info Informational.
debug Debug-level messages

Table 1: Apache log levels

2.1.5 mod status

The mod status module gives an overview of the server performance at a given
moment. It generates an HTML page with, among others, the number of Apache
processes running and how many bytes each has served, and the CPU load
caused by Apache and the rest of the system. The Apache Software Foundation
uses mod status on its own web site6. If you put the ExtendedStatus On directive
in your httpd.conf, the mod status page will give you more information at the
cost of a little extra work per request.

2.2 Web Server Log Files

Apache creates log files, which can yield a lot of information about server per-
formance.

2.2.1 Error Log

The error log will contain messages if the server has reached the maximum num-
ber of active processes or the maximum number of concurrently open files. The
error log also reflects when processes are being spawned at a higher-than-usual
rate in response to a sudden increase in load. Indeed, any error encountered by
Apache will appear in this log, so it is good practice to review it frequently.

The Error Log is configured through the ErrorLog and LogLevel configu-
ration directives. The error log of Apache’s main server configuration receives
the log messages that pertain to the entire server: startup, shutdown, crashes,
excessive process spawns, etc. The ErrorLog directive can also be used in vir-
tual host containers. The error log of a virtual host receives only log messages
specific to that virtual host, such as authentication failures and ‘File not Found’
errors. On a server that is visible to the Internet, the latter will predominantly
be worm attacks and exploit attempts.

The LogLevel directive determines the level of detail included in the logs.
There are eight log levels, described in Table 1. The default log level is warn. A

6http://www.apache.org/server-status

4

172.16.2.91 - - [16/Nov/2003:15:23:27 -0800] "GET /~sctemme/ HTTP/1.1"

172.16.2.200 1446 91 - - [16/Nov/2003:15:23:28 -0800] "GET

172.16.2./~sctemme/css/doc.css HTTP/1.1" 200 167 91 - -

172.16.2.[16/Nov/2003:15:23:28 -0800] "GET /~sctemme/css/menu.css

172.16.2.HTTP/1.1" 200 623 91 - - [16/Nov/2003:15:23:29 -0800] "GET

172.16.2./favicon.ico HTTP/1.1" 404 283 91 - - [16/Nov/2003:15:23:34

172.16.2.-0800] "GET /~sctemme/index.html HTTP/1.1" 200 1446

Field Content Explanation
Client IP 172.16.2.91 IP address where the request

originated
RFC 1413 ident - Remote user identity as reported

by their identd
username - Remote username as authenti-

cated by Apache
timestamp [16/Nov/2003:15:23:29 -0800] Date and time of request

Request ”GET /favicon.ico HTTP/1.1” Request line
Status Code 404 Response code

Content Bytes 283 Bytes transferred w/o headers

Table 2: Common Log Format fields explained

production server should not be run on debug, but increasing the level of detail
in the error log can be useful during troubleshooting.

2.2.2 Access Log

Apache keeps track of every request it services in its access log file. In addition
to the time and nature of a request, Apache can log the client IP address, date
and time of the request, the result and a host of other information. The various
logging format features are documented in the Apache manual7. This file exists
by default for the main server and can be configured per virtual host by using
the TransferLog or CustomLog configuration directive.

The access logs can be analyzed with any of several free and commercially
available programs. Popular free analysis packages include Analog8 and We-
balizer9. Log analysis should be done offline so the web server machine is not
burdened by processing the log files. Most log analysis packages understand the
Common Log Format. The fields in the log lines are explained in Table 2.

2.3 Generating A Test Load

It is useful to generate a test load to monitor system performance under realistic
operating circumstances. Besides commercial packages such as LoadRunner,

7http://httpd.apache.org/docs/mod/mod log config.html# formats
8http://www.analog.cx/
9http://www.mrunix.net/webalizer/

5

there are a number of freely available tools to generate a test load against your
web server.

• Apache ships with a test program called ab, short for Apache Bench. It
can generate a web server load by repeatedly asking for the same file in
rapid succession. You can specify a number of concurrent connections
and have the program run for either a given amount of time or a specified
number of requests.

• Another freely available load generator is http load10. This program works
with a URL file and can be compiled with SSL support.

• The Apache Software Foundation offers a tool named flood11. Flood is a
fairly sophisticated program that is configured through an XML file.

• Finally, JMeter12, a Jakarta subproject, is an all-Java load-testing tool.
While early versions of this application were slow and difficult to use, the
current version 2.1.1 seems to be versatile and useful.

When you load-test your web server, please keep in mind that, if that server
is in production, the test load may negatively affect the server’s response. Also,
any data traffic you generate may be charged against your monthly traffic al-
lowance.

3 Configuring for Performance

3.1 Apache Configuration

The Apache 1.3 httpd is a pre-forking web server. When the server starts, the
parent process spawns a number of child processes that do the actual work of
servicing requests. Apache 2 introduced the concept of the Multi-Processing
Module (MPM). Developers can write MPMs to suit the process- or threading-
architecture of their specific operating system. Apache 2 comes with special
MPMs for Windows, OS/2, Netware and BeOS. On unix-like platforms, the
two most popular MPMs are Prefork and Worker. The Prefork MPM offers
the same pre-forking process model that Apache 1.3 uses. The Worker MPM
runs a smaller number of child processes, and spawns multiple request handling
threads within each child process.

The maximum number of workers, be they pre-forked child processes or
threads within a process, is an indication of how many requests your server
can manage concurrently. It is merely a rough estimate because the kernel can
queue connection attempts for your web server. When your site becomes busy
and the maximum number of workers is running, the machine doesn’t hit a hard
limit beyond which clients will be denied access. However, once requests start
backing up, system performance is likely to degrade.

10http://www.acme.com/software/http load/
11http://httpd.apache.org/test/flood/
12http://jakarta.apache.org/jmeter/

6

3.1.1 MaxClients

The MaxClients directive in your Apache httpd configuration file specifies the
maximum number of workers your server can create. It has two cousins, the
MinSpareServers and MaxSpareServers directives, which specify the number of
workers Apache keeps waiting in the wings ready to serve requests. The absolute
maximum number of processes is hard coded into Apache 1.3 as the parame-
ter HARD SERVER LIMIT: in order to change it you’d have to recompile the
server. Fortunately, most distributors have raised this limit well beyond the
default of 256. In Apache 2.0, this limit is configurable through the ServerLimit
directive.

3.1.2 Spinning Threads

For Apache 1.3, or the prefork MPM of Apache 2.0, the above directives are
all there is to determining the process limit. However, if you are running a
threaded MPM the situation is a little more complicated. Threaded MPMs
support the ThreadsPerChild directive13. Apache requires that MaxClients is
evenly divisible by ThreadsPerChild. If you set either directive to a number
that doesn’t meet this requirement, Apache will send a message of complaint
to the error log and adjust the ThreadsPerChild value downwards until it is an
even factor of MaxClients.

3.1.3 Sizing MaxClients

Optimally, the maximum number of processes should be set so that all the
memory on your system is used, but no more. If your system gets so overloaded
that it needs to heavily swap core memory out to disk, performance will degrade
quickly. The formula for determining MaxClients is fairly simple:

MaxClients =
total RAM −RAM for OS −RAM for external programs

RAM per httpd process

The various amounts of memory allocated for the OS, external programs
and the httpd processes is best determined by observation: use the top and
free commands described above to determine the memory footprint of the OS
without the web server running. You can also determine the footprint of a
typical web server process from top: most top implementations have a Resident
Size (RSS) column and a Shared Memory column. The difference between these
two is the amount of memory per-process. The shared segment really exists only
once and is used for the code and libraries loaded and the dynamic inter-process
tally, or ‘scoreboard,’ that Apache keeps. How much memory each process takes
for itself depends heavily on the number and kind of modules you use. The best
approach to use in determining this need is to generate a typical test load against
your web site and see how large the httpd processes become.

13http://httpd.apache.org/docs-2.0/mod/mpm common.html #threadsperchild

7

The ‘RAM for external programs’ parameter is intended mostly for CGI
programs and scripts that run outside the web server process. However, if you
have a Java virtual machine running Tomcat on the same box it will need a
significant amount of memory as well. The above assessment should give you
an idea how far you can push MaxClients, but it is not an exact science. When
in doubt, be conservative and use a low MaxClients value. The Linux kernel
will put extra memory to good use for caching disk access. On Solaris you need
enough available real RAM memory to create any process. If no real memory
is available, Apache will start writing ‘No space left on device’ messages to the
error log and be unable to fork additional child processes, so a higher MaxClients
value may actually be a disadvantage.

3.1.4 Selecting your MPM

The prime reason for selecting a threaded MPM is that threads consume fewer
system resources than processes, and it takes less effort for the system to switch
between threads. This is more true for some operating systems than for others.
On systems like Solaris and AIX, manipulating processes is relatively expen-
sive in terms of system resources. On these systems, running a threaded MPM
makes sense. On Linux, the threading implementation actually uses one process
for each thread. Linux processes are relatively lightweight, but it means that
a threaded MPM offers less of a performance advantage than in other environ-
ments.

Running a threaded MPM can cause stability problems in some situations
For instance, should a child process of a preforked MPM crash, at most one client
connection is affected. However, if a threaded child crashes, all the threads in
that process disappear, which means all the clients currently being served by
that process will see their connection aborted. Additionally, there may be so-
called “thread-safety” issues, especially with third-party libraries. In threaded
applications, threads may access the same variables indiscriminantly, not know-
ing whether a variable may have been changed by another thread.

This has been a sore point within the PHP community14. The PHP processor
heavily relies on third-party libraries and cannot guarantee that all of these are
thread-safe. The good news is that if you are running Apache on Linux, you can
run PHP in the preforked MPM without fear of losing too much performance
relative to the threaded option.

3.1.5 Spinning Locks

Apache maintains an inter-process lock around its network listener. For all
practical purposes, this means that only one httpd child process can receive
a request at any given time. The other processes are either servicing requests
already received or are ‘camping out’ on the lock, waiting for the network listener
to become available. This process is best visualized as a revolving door, with
only one process allowed in the door at any time. On a heavily loaded web

14http://www.php.net/

8

server with requests arriving constantly, the door spins quickly and requests are
accepted at a steady rate. On a lightly loaded web server, the process that
currently “holds” the lock may have to stay in the door for a while, durin
which all the other processes sit idle, waiting to acquire the lock. At this
time, the parent process may decide to terminate some children based on its
MaxSpareServers directive.

3.1.6 The Thundering Herd

The function of the ‘accept mutex’ (as this inter-process lock is called) is to keep
request reception moving along in an orderly fashion. If the lock is absent, the
server may exhibit the Thundering Herd syndrome.

Consider a football team15 poised on the line of scrimmage. If the football
players were Apache processes all team members would go for the ball simulta-
neously at the snap. One process would get it, and all the others would have
to lumber back to the line for the next snap. In this metaphor, the accept mu-
tex acts as the quarterback, delivering the connection “ball” to the appropriate
player process.

Moving this much information around is obviously a lot of work, and, like a
smart person, a smart web server tries to avoid it whenever possible. Hence the
revolving door construction. In recent years, many operating systems, including
Linux and Solaris, have put code in place to prevent the Thundering Herd
syndrome. Apache recognizes this and if you run with just one network listener,
meaning one virtual host or just the main server, Apache will refrain from using
an accept mutex. If you run with multiple listeners (for instance because you
have a virtual host serving SSL requests), it will activate the accept mutex to
avoid internal conflicts.

You can manipulate the accept mutex with the AcceptMutex directive. Be-
sides turning the accept mutex off, you can select the locking mechanism. Com-
mon locking mechanisms include fcntl, System V Semaphores and pthread lock-
ing. Not all are available on every platform, and their availability also depends
on compile-time settings. The various locking mechanisms may place specific
demands on system resources: manipulate them with care.

There is no compelling reason to disable the accept mutex. Apache auto-
matically recognizes the single listener situation described above and knows if
it is safe to run without mutex on your platform16.

3.2 Tuning the Operating System

People often look for the ‘magic tune-up’ that will make their system perform
four times as fast by tweaking just one little setting. The truth is, present-day

15Any resemblance to the college in West Virginia is purely coincidental.
16To find out, run httpd with the -V flag and see if -D SIN-

GLE LISTEN UNSERIALIZED ACCEPT appears in the output. You can see which
locking mechanisms are available by running httpd -L, and browsing the output for the
AcceptMutex directive.

9

UNIX derivatives are pretty well adjusted out of the box and there is not a lot
that needs to be done to make them perform optimally. However, there are a
few things that an administrator can do to improve performance.

3.2.1 RAM and Swap Space

The usual mantra regarding RAM is “more is better”. As discussed above, un-
used RAM is put to good use as file system cache. The Apache processes get
bigger if you load more modules, especially if you use modules that generate
dynamic page content within the processes, like PHP and mod perl. A large
configuration file–with many virtual hosts–also tends to inflate the process foot-
print. Finally, Apache 2.0 processes tend to have larger footprints than those
of Apache 1.3. Having ample RAM allows you to run Apache with more child
processes, which allows the server to process more concurrent requests.

While the various platforms treat their virtual memory in different ways, it
is never a good idea to run with less disk-based swap space than RAM. The
virtual memory system is designed to provide a fallback for RAM, but when you
don’t have disk space available and run out of swappable memory, your machine
grinds to a halt. This can crash your box, requiring a physical reboot for which
your hosting facility may smugly charge you.

Also, such an outage naturally occurs when you least want it: when the
world has found your website and is beating a path to your door. If you have
enough disk-based swap space available and the machine gets overloaded, it may
get very, very slow as the system needs to swap memory pages to disk and back,
but when the load decreases the system should recover. Remember, you still
have MaxClients to keep things in hand.

Most unix-like operating systems use designated disk partitions for swap
space. When a system starts up it finds all swap partitions on the disk(s), by
partition type or because they are listed in the file /etc/fstab, and automatically
enables them. When adding a disk or installing the operating system, be sure
to allocate enough swap space to accomodate eventual RAM upgrades. Re-
assigning disk space on a running system is a cumbersome process.

Plan for available hard drive swap space of at least twice your amount of Tip
RAM, perhaps up to four times in situations with frequent peaking loads. Re-
member to adjust this configuration whenever you upgrade RAM on your sys-
tem. In a pinch, you can use a regular file as swap space. For instructions
on how to do this, see the manual pages for the mkswap and swapon or swap
programs.

3.2.2 ulimit: Files and Processes

Given a machine with plenty of RAM and processor capacity, you can run
hundreds of Apache processes if necessary. . . and your kernel allows it. The
Linux 2.2 kernel series by default limited the number of processes a user can
run to 256, which is a fairly small number in computational circles.

10

Consider a situation in which several hundred web servers are running; if
some of these need to spawn CGI processes, the maximum number of processes
would occur quickly.

However, you can change this limit with the command

ulimit -u [newvalue]

This must be changed before starting the server, since the new value will
only be available to the current shell and programs started from it. In newer
Linux kernels the default has been raised to 2048. There does not seem to be a
process limit on Solaris. On 2048. FreeBSD, the number seems to be the rather
unusual 513. Since the default user shell on this system is csh and ulimit is a
built-in command in Bourne-like shells, you need to start a Bourne shell or bash
to see and set this value, and then start the web server from this shell.

Similarly, the kernel may limit the number of open files per process. This is
generally not a problem for pre-forked servers, which just handle one request at
a time per process. Threaded servers, however, serve many requests per process
and much more easily run out of available file descriptors. You can increase the
maximum number of open files per process by running the

ulimit -n [newvalue]

command. Once again, this must be done prior to starting Apache.

3.2.3 Setting User Limits on Linux System Startup

Under Linux, you can set the ulimit parameters on bootup by editing the
/etc/security/limits.conf file. This file allows you to set soft and hard limits
on a per-user or per-group basis; the file contains commentary explaining the
options. To enable this, make sure that the file /etc/pam.d/login contains the
line

session required /lib/security/pam_limits.so

All items can have a ‘soft’ and a ‘hard’ limit: the first is the default setting
and the second the maximum value for that item.

Solaris does not seem to have a similar mechanism for manipulating limit
values at boot time: you will have to set them in your startup script(s).

3.2.4 Turn Off Unused Services and Modules

Many UNIX and Linux distributions come with a slew of services turned on by
default. You probably need few of them. For example, your web server does
not need to be running sendmail, nor is it likely to be an NFS server, etc. Turn
them off.

On Red Hat Linux, the chkconfig tool will help you do this from the command
line. On Solaris systems, my approach is to inspect the /etc/rc[123].d directories
and to change the first character of the name of startup scripts I don’t want to

11

start automatically from S to s. Since the Solaris file system is case sensitive, this
disables services without actually altering them so they become unrecognizable.

Thus, S88sendmail becomes s88sendmail. This way, the init process will Tip
pass them over but it’s still evident to other sysadmins that they were once
active. While Solaris transitions through subsequent run levels on startup, the
Linux initialization just executes all the scripts in the default run level directory.
The default run level for a Linux web server should be 3: you don’t need to run
an X-Windows desktop on a web server so level 5 should not be necessary.

In a similar fashion, cast a critical eye on the Apache modules you load. Most
binary distributions of Apache, and pre-installed versions that come with Linux
distributions, have their modules enabled through the LoadModule directive.

A notable exception is the Apache httpd on Cobalt Raq servers, which has
mod perl compiled statically to run the GUI–despite the fact that the GUI
Apache is running as an entirely different process from the one doing the ac-
tual serving. You cannot disable this instance of mod perl. Other modules,
however, may be culled: if you don’t use their functionality and configuration
directives, you can turn them off by commenting out the corresponding Load-
Module lines. Read the documentation17 on each module’s functionality before
deciding whether to keep it enabled. While the performance overhead of an
unused module is small, it’s also unnecessary.

4 Caching Content

Requests for dynamically generated content usually take significantly more re-
sources than requests for static content. Static content consists of simple files–
pages, images, etc.–on disk that are very efficiently served. On platforms that
support it, Apache uses the sendfile(2) system call to instruct the operat-
ing system kernel to transfer the contents of requested files directly to network
sockets. The server does not need to read or inspect the contents of the files
which makes this a very efficient operation. Many operating systems also auto-
matically cache the contents of frequently accessed files in memory.

Processing dynamic requests, on the contrary, can be much more involved.
Running CGI scripts, handing off requests to an external application server and
accessing database content can introduce significant latency and processing load
to a busy web server. Under many circumstances, performance can be improved
by turning popular dynamic requests into static requests. In this section, two
approaches to this will be discussed.

4.1 Making Popular Pages Static

By pre-rendering the response pages for the most popular queries in your ap-
plication, you can gain a significant performance improvement without giving

17http://httpd.apache.org/docs/2.2/ for Apache 2, and http://httpd.apache.org/docs/1.3/
for Apache 1.3

12

up the flexibility of dynamically generated content. For instance, if your ap-
plication is a flower delivery service, you would probably want to pre-render
your catalog pages for red roses during the weeks leading up to Valentine’s Day.
When the user searches for red roses, they are served the pre-rendered page.
Queries for, say, yellow roses will be generated directly from the database. The
mod rewrite module included with Apache is a great tool to implement these
substitutions.

4.1.1 Example: A Statically Rendered Blog

Blosxom18 is a lightweight web log package that runs as a CGI. It is written in
Perl and uses plain text files for entry input. Besides running as CGI, Blosxom
can be run from the command line to pre-render blog pages. Pre-rendering
pages to static HTML can yield a significant performance boost in the event
that large numbers of people actually start reading your blog.

To run blosxom for static page generation, edit the CGI script according to
the documentation [9]. Set the $static dir variable to the DocumentRoot of the
web server, and run the script from the command line as follows:

$ perl blosxom.cgi -password=’whateveryourpassword’

This can be run periodically from Cron, after you upload content, etc. To
make Apache substitute the statically rendered pages for the dynamic content,
we’ll use mod rewrite. This module is included with the Apache source code,
but is not compiled by default. It can be built with the server by passing the
option --enable-rewrite[=shared] to the configure command. Many binary
distributions of Apache come with mod rewrite included. The following is an
example of an Apache virtual host that takes advantage of pre-rendered blog
pages:

Listen *:8001

<VirtualHost *:8001>

ServerName blog.sandla.org:8001
ServerAdmin sander@temme.net

DocumentRoot "/home/sctemme/inst/blog/httpd/htdocs"

<Directory "/home/sctemme/inst/blog/httpd/htdocs">

Options +Indexes

Order allow,deny
Allow from all

18http://www.blosxom.com/

13

RewriteEngine on

RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule ^(.*)$ /cgi-bin/blosxom.cgi/$1 [L,QSA]

</Directory>

RewriteLog /home/sctemme/inst/blog/httpd/logs/rewrite_log
RewriteLogLevel 9

ErrorLog /home/sctemme/inst/blog/httpd/logs/error_log
LogLevel debug
CustomLog /home/sctemme/inst/blog/httpd/logs/access_log common

ScriptAlias /cgi-bin/ /home/sctemme/inst/blog/bin/

<Directory "/home/sctemme/inst/blog/bin">
Options +ExecCGI

Order allow,deny
Allow from all

</Directory>

</VirtualHost>

The RewriteCond and RewriteRule directives say that, if the requested
resource does not exist as a file or a directory, its path is passed to the Blosxom
CGI for rendering. Blosxom uses Path Info to specify blog entries and index
pages, so this means that if a particular path under Blosxom exists as a static
file in the file system, the file is served instead. Any request that isn’t pre-
rendered is served by the CGI. This means that individual entries, which show
the comments, are always served by the CGI which in turn means that your
comment spam is always visible. This configuration also hides the Blosxom CGI
from the user-visible URL in their Location bar. Mod rewrite is a fantastically
powerful and versatile module: investigate it to arrive at a configuration that is
best for your situation.

4.2 Caching Content With mod cache

As described in [8], mod cache is no longer considered experimental in httpd 2.2
and is now included in the base distribution. The mod cache module provides
intelligent caching of HTTP responses: it is aware of the expiration timing and
content requirements that are part of the HTTP specification. The mod cache
module caches URL response content. If content sent to the client is considered

14

cacheable, it is saved to disk. Subsequent requests for that URL will be served
directly from the cache. The provider module for mod cache, mod mem cache or
mod disk cache, determines whether the cached content is stored on disk or in
memory. Most server systems will have more disk available than memory, and
it’s good to note that some operating system kernels cache frequently accessed
disk content transparently in memory.

To enable efficient content caching and avoid presenting the user with stale
or invalid content, the application that generates the actual content has to send
the correct response headers. Without headers like Etag:, Last-Modified: or
Expires:, mod cache can not make the right decision on whether to cache the
content, serve it from cache or leave it alone. When testing content caching,
you may find that you need to modify your application or, if this is impossi-
ble, selectively disable caching for URLs that cause problems. The mod cache
modules are not compiled by default, but can be enabled by passing the option
--enable-cache[=shared] to the configure script. If you use a binary distri-
bution of Apache, or it came with your port or package collection, it may have
mod cache already included.

4.2.1 Example: wiki.apache.org

The Apache Software Foundation Wiki is served by MoinMoin19. MoinMoin
is written in Python and runs as a CGI; any attempt so far to run it under
mod python has been unsuccessful. The CGI proved to place an untenably
high load on the server machine, especially when the Wiki was being indexed
by search engines like Google. To lighten the load on the server machine, the
Apache Infrastructure team turned to mod cache. It turned out MoinMoin
needed a small patch to ensure proper behaviour behind the caching server:
certain requests can never be cached and the corresponding Python modules
were patched to send the proper HTTP response headers. After this modifica-
tion, the cache in front of the Wiki was enabled with the following configuration
snippet in httpd.conf:

<IfModule mod_cache.c>
<IfModule mod_disk_cache.c>

CacheRoot /raid1/cacheroot
CacheEnable disk /

A page modified 100 minutes ago will expire in 10 minutes
CacheLastModifiedFactor .1
Always check again after 6 hours
CacheMaxExpire 21600

</IfModule>

</IfModule>

19http://moinmoin.wikiwikiweb.de/

15

This configuration will try to cache any and all content within its virtual
host. It will never cache content for more than six hours (the CacheMaxExpire
directive). If no Expires: header is present in the response, mod cache will
compute an expiration period from the Last-Modified header. The compu-
tation using CacheLastModifiedFactor is based on the assumption that if a
page was recently modified, it is likely to change again in the near future and
will have to be re-cached. Please see the mod cache documentation [8] for more
information on using this module.

5 Conclusion

As you can see, there are a number of effective ways to tune an Apache system
to perform better. Armed with a basic knowledge of the system’s original per-
formance and its desired memory footprint, an administrator can make small
changes which may result in dramatic improvements. Setting system variables
correctly, turning off unnecessary processes, and distributing the load can all be
excellent tools for making your less than state of the art computer more fleet of
foot.

References

[1] Ryan B. Bloom, Apache Server 2.0: The Complete Reference, 2002 Mc-
Graw Hill Osborne; ISBN 0-07-222344-8

[2] Ben Laurie and Peter Laurie, Apache: The Definitive Guide (3rd Edition),
2002 O’Reilly & Associates; ISBN 0596002033

[3] Patrick Killelea, Web Performance Tuning, 2nd Edition, 2002 O’Reilly &
Associates; ISBN 0-596-00172-X

[4] http://httpd.apache.org/docs/2.2/misc/perf-tuning.html

[5] http://httpd.apache.org/docs/1.3/misc/perf-tuning.html

[6] Adrian Cockcroft, Richard Pettit and Sun Microsystems Press, Sun Per-
formance and Tuning: Java and the Internet (2nd Edition), 1998 Prentice
Hall PTR; ISBN 0130952494

[7] Ken Coar and Rich Bowen, Apache Cookbook, 2003 O’Reilly & Associates;
ISBN 0596001916

[8] http://httpd.apache.org/docs/2.2/caching.html

[9] http://www.blosxom.com/documentation/users/configure/static.html

16

