
Jeremias Märki <jeremias@apache.org>
2006-05-28, FR20

Getting started with

Topics

• Capabilities
• Project Status
• Integrating FOP
• Developing documents
• Q & A

XSL

• eXtensible Stylesheet Language

• Consists of two parts

• XSLT – Transformations

• XSL-FO – Formatting Objects

• Apache FOP implements XSL-FO

• A good subset of XSL-FO 1.0

• Some elements from XSL-FO 1.1 (CR!)

Compliance

• FOP tries to be a reference implementation

• See http://xmlgraphics.apache.org/fop/compliance.html

• Extensions

• General extensions (fox: prefix)

• Output format specific extensions

Document Types

• Business documents
• Invoices, insurance policies, letters etc.

• Reports
• Tabular data

• Book-like documents
• Books

• Papers

• DocBook

Trying to do too much?

• Conflict of interest:

• Business docs, reports: Speed

• Books, Papers: Quality

• XSL-FO is feature-rich but still lacking for
certain tasks

• XSL-FO is no catch-all solution!

Alternatives

• CSS in simpler situations
• TeX especially for scientific docs
• Proprietary formatters

• High-speed for business docs

• Specialized tools: FrameMaker & Co.

• ODF (Open Document Format)
• etc. etc.

Output Formats

• Page-oriented
• Stable: PDF, PostScript, Plain Text

• Almost: Java2D/AWT, Print, PNG, TIFF

• Sandbox/New: AFP/MO:DCA, PCL 5

• Flow-oriented
• RTF (optimized for MS Word)

• FOP is extensible: your format!

Non-FO content

• fo:external-graphic
• SVG, bitmap images (PNG, JPEG, GIF etc.)

• fo:instream-foreign-object
• SVG (through Apache Batik)

• Barcodes (through Barcode4J)

• MathML (through JEuclid)

• FOP is extensible: your format!

• Others: XMP metadata

Special Features

• PDF encryption (PDF 1.3 level only)
• PDF/A-1b (not 100% complete)
• PDF/X (coming up)
• Intermediate Format (Area Tree XML)

Project History
• FOP contributed to the ASF by James Tauber in

1999

• Famous FOP 0.20.5 in July 2003

• Batik and FOP form the XML Graphics project in
October 2004

• Loooong redesign phase from Oct 2001 until
November 2005 with FOP 0.90alpha

• FOP 0.91beta in December 2005

• FOP 0.92beta in April 2006 (last beta)

What's new?

• Completely new layout engine
• Layout approach borrowed from

Donald Knuth (TeX)

• Improved architecture including support for
flow-oriented formats

• New API!
• Much improved compliance
• Greater coverage of the FO spec

What's missing?

• Optimizations for large documents
• Floats
• Auto-table layout
• Collapsing border model
• A lot of smaller things...

What's “XML Graphics”?

• Batik and FOP together under one PMC
• Goal: Improved oversight and cooperation
• New: XML Graphics Commons

• Clear dependency tree between Batik/FOP

• Higher visibility for components

• Basic Tools

• Graphics2D implementations

• etc. etc.

Clean dependency tree

• Before and after (work in progress):

Prospects

• FOP 1.0 imminent
• Important missing features are now being

attacked.
• Live codebase is interesting for investments.

New contributors are always welcome!!!

Integrating FOP

• Formatting Process

• Integration Approaches

Hello World in XSL-FO
<?xml version="1.0" encoding="UTF-8"?>

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <fo:layout-master-set>

 <fo:simple-page-master master-name="A4"

 page-height="29.7cm" page-width="21cm"

 margin="2cm">

 <fo:region-body/>

 </fo:simple-page-master>

 </fo:layout-master-set>

 <fo:page-sequence master-reference="A4">

 <fo:flow flow-name="xsl-region-body">

 <fo:block>Hello World!</fo:block>

 </fo:flow>

 </fo:page-sequence>

</fo:root>

Formatting Process

FOP is only a part of the transformation chain!

Data
Source

XML XSL-FO
Target

File
Paper

Generation Transformation
(XSLT)

Layout Printing

How FOP works

• Input: XSL-FO (as a SAX stream)
• Direct conversion for flow-oriented formats
• Layout Engine (Pagination) for page-oriented

formats
• Output: Any of the supported output formats

Data Flow inside FOP

areaTree

pageSequence

pageViewport pageViewport

page page

...

fo:root

fo:page-sequence

fo:static-content fo:flow

fo:layout-master-set

FO Tree
Builder

Layout
Engine

Renderer

FO Tree
Handler

fo:root

fo:page-sequence

fo:static-content fo:flow

fo:layout-master-set

areaTree

pageSequence

pageViewport pageViewport

page page

...

SAX
Stream PDF, PS

PCL, TIFF,
Print, ...

RTF

Integrating FOP

• Requirements:
• Java Runtime Environment (1.3.1 or later)

• Usage:
• Command-line

• From Java (embedded)

• Ant Task

• Servlet

• etc. etc.

Your Skills!

• Know your XML!
• Namespaces are important to keep XSLT and XSL-FO

apart.

• Know your XSLT and XSL-FO!
• At least some basic knowledge about Java

• Controlling a class path (-cp)

• Setting the VM heap size (-Xmx 256M)

Command-line

• Use in scripts
• For stylesheet development/debugging
• Slow! (Class loading, JIT, each time)
• Restricted functionality
• Easy to use:

fop -xml mydata.xml -xsl my2fo.xsl -pdf out.pdf

Ant Task

• Useful for generating documentation
in a project

• Useful for batch processing
<target name="generate-multiple-pdf"

 description="Generates multiple PDF files">

 <fop format="application/pdf" outdir="${pdf.dir}">

 <fileset dir="${fo.dir}">

 <include name="*.fo"/>

 </fileset>

 </fop>

</target>

Servlet

• Sample servlet included in the distribution
• Don't use the sample servlet in production!

• It's only a simple example and a starting point.

• Fast
• Guard against DoS attacks!

• Restrict concurrency!

• Be in control what gets rendered!

Embedding in Java

• For any custom integration work
• Requires Java knowledge (obviously)
• Requires JAXP knowledge
• FOP's API tries to reuse most of the basic

JAXP Transformer usage pattern.
• Coupling XSLT and FOP using SAX
• Step-by-step example on the website!

Approach FOP's API

• Familiarize yourself with JAXP's Transformer

• Then attach FOP to the output for the
Transformer

• For debugging, simply detach FOP again and
write the output (XSL-FO) to a file.

Basic Transformer pattern

TransformerFactory factory

= TransformerFactory.newInstance();

Source xsltSrc = new StreamSource(xslt);

Transformer transformer

= factory.newTransformer(xsltSrc);

Source src = new StreamSource(xml);

Result res;

res = new StreamResult(out);

//or

//res = new SAXResult(fop.getDefaultHandler());

transformer.transform(src, res);

Other Possibilities

• Apache Cocoon

• May be a bit complicated at first but handles the
whole transformation chain for you!

• Some have written WebServices

• Return PDFs as attachments

• Working on a .NET integration for FOP (using
IKVM)

Developing Documents

• Skills

• Approaches

• Tips

• Troubleshooting

Your Skills!

• Again XML, XSLT and XSL-FO!

• XSLT is a programming language,
but it's not like Pascal or C or Java.

• The XSL specification is a complex beast but
don't be afraid to look at it.

Approaches
• WYSIWYG or WYSINWIG Editors

• Ideal for simple documents

• Structural Editors
• Allows for more complex documents

• XSLT programming by hand
• Full flexibility

• Mixed development
• The best of both worlds

• Editing in non-FO formats (DocBook)

Experience
(This mostly applies to business docs only!)

• Many start with WYSIWYG Editors

• Many end up writing XSLT

• You may need to use both approaches.

• It all depends on your requirements and on the
people doing the development.

A few tips

• Install GhostScript/GhostView

• Displays and auto-reloads PDF/PS files

• Or open the PDF in the browser instead of
directly in Acrobat Reader

• File is not locked this way. Just press F5.

• Don't use the JDK's parser and XSLT
implementation (too buggy)

• “Endorsed standards override mechanism”

Endorsed Standards Override
• http://java.sun.com/j2se/1.4.2/docs/guide/standards/

• Download the latest Xerces-J and Xalan-J (or
SAXON)

• Put the JAR files in the “endorsed” directory
• JRE: <jre-home>/lib/endorsed

• JDK: <jdk-home>/jre/lib/endorsed

• Or use “-Xbootclasspath/p:”

http://java.sun.com/j2se/1.4.2/docs/guide/standards/

When writing XSLT...

• Make use of the “import” facility.
• Extract common templates into “library”

stylesheets (address formatting, for example)
• Avoid “spaghetti code” and nested

for-each.
• Use “attribute-sets” to define styles.
• Refactoring helps, even in XSLT

Identifying problems

• Split the transformation chain.
• Write the generated XSL-FO to a file.

• “-foout” on the command-line

• Comment out portions of the XML/XSLT to
narrow down the cause.

• You get line numbers if you feed FOP FO
instead of XML+XSLT.

Problem in XSLT or FOP?

• Many people mix XSL transformation and FO
processing in their brains.
• Example: You don't have access to page numbers

during XSLT!
• That's what page-number(-citation) are here for. FOP fills

in the page numbers later.

• Step 1: XSLT
• Step 2: FOP

Getting help

• Is your problem about XSLT or FOP?
• FOP website contains links to forums and

mailing lists on XSLT
• “fop-users” mailing list helps you with Apache

FOP.
• Be sure to check the FAQ and the mailing list

archives first.

When asking for help...

• Post an example but don't send XSLT files! Send
scaled-down FO files!

• Smart questions quicker answers
• ALWAYS state:

• FOP and Java version

• Operating System

• How you use FOP (command-line, servlet etc.)

• Application server if applicable

Stuck? Need help?

Contact us by subscribing to
fop-users@xmlgraphics.apache.org

(To subscribe, send an empty mail to
fop-users-subscribe@xmlgraphics.apache.org)

(Forum-style access through GMane and Nabble.)

mailto:fop-users@xmlgraphics.apache.org
mailto:fop-users-subscribe@xmlgraphics.apache.org

Questions?

Thank you!!!

Feedback? Comments? Suggestions?

Help wanted in the
XML Graphics project! J

