
The Apache DBD Framework

Nick Kew

WebThing Limited http://www.webthing.com/

and

Apache Software Foundation http://www.apache.org/

The Apache DBD Framework

● The Need for DBD
● Historical Context
● DBD Architecture
● apr_dbd
● DBD Drivers
● mod_dbd
● DBD for Server Administrators
● DBD for Module Developers
● DBD for Scripting
● DBD for Standalone Applications

Traditional Application

Apache

Database

Application

Traditional Applications

Perl
PHP

Python Authentication

LoggingMyApp

Database

N Applications = N expensive connections

DBD Applications

Perl
PHP

Python Authentication

LoggingMyApp

Database

DBD

N Applications = 1 expensive connection

Traditional Connections

● Trad. CGI: one connection per request

Problem: opening and closing connections is
expensive, so this grows very inefficient as hit
rates rise.

● LAMP: one (or N) connection per worker

Problem: expensive connections held even
when not in use, and number increases
linearly with number of workers.

DBD Connections

● Shared Pool of database connections
● Persistent – no per-request overhead
● N:M – no per-worker overhead
● Dynamically resizes to meet traffic levels

Scalability: DBD vs LAMP

● No overhead as number of database
applications grows

● No overhead due to non-database traffic as
number of workers (Web traffic) grows.

● Reduced overhead in database traffic

● Worst case: reduces to traditional model

● Best case: Reduces overhead from
O(NumApps * NumWorkers) to O(1)

A Brief History

● Prior Art: Perl DBI/DBD; libdbi, etc
● Prerequisite: apr_reslist
● Site Valet: DBD-like layer with connection

pooling
● ApacheCon 2003: BOF session
● Connection Pooling Modules for individual

databases
● Connection Pooling Module for libdbi
● The current architecture:

mod_dbd + apr_dbd

DBD Architecture

apr_dbd

#include “apr_dbd.h”

● Opaque Types
● Drivers
● Interface Layer
● Queries
● Query Results
● Transactions
● Other API functions

Opaque Types

● apr_dbd_driver_t
● apr_dbd_t
● apr_dbd_transaction_t
● apr_dbd_prepared_t
● apr_dbd_results_t
● apr_dbd_row_t

Driver

#include “private/apr_dbd_internal.h”;

struct apr_dbd_driver_t {
/* Declare functions implementing each API func */

} ;
APU_DECLARE_DATA apr_dbd_driver_t
 apr_dbd_foo_driver = {

/* Functions implementing each API func
 * based on the underlying database's API
 */

};

Drivers

● Statically linked or dynamically loaded
● Separate compilation an option
● Current build doesn't support dynamic load

apr_dbd_get_driver() {
 /* Check for it in loaded drivers */
#if APR_DSO_BUILD (and not already found)
 /* If threaded, obtain a mutex */
 /* Load driver */
#endif
}

Interface Layer

static int apr_dbd_do_something(
 apr_dbd_driver_t* driver,
 apr_dbd_t* handle, ...)
{
 /* minimal apr_dbd code if required */

 return driver->do_something(handle, ...) ;
}

Queries

apr_dbd_query (no results)
apr_dbd_select (returns a result set)

apr_dbd_prepare (prepare a query)
/* Using printf-like format string for query */

apr_dbd_pquery (prepared query/argc-argv)
apr_dbd_pselect
apr_dbd_pvquery (prepared query/varargs)
apr_dbd_pvselect

Query Results

apr_dbd_num_cols
apr_dbd_num_tuples
apr_dbd_get_name
apr_dbd_get_row
apr_dbd_get_entry

Transactions

apr_dbd_transaction_start
apr_dbd_transaction_end
apr_dbd_transaction_state

Native Database

apr_dbd_native_handle

- get handle on the underlying database for
(non-portable) operations supported by a
database client library but not by apr_dbd

Other API

apr_dbd_init
apr_dbd_name
apr_dbd_open
apr_dbd_check_conn
apr_dbd_close
apr_dbd_select_db
apr_dbd_error
apr_dbd_escape

mod_dbd

● Threaded and Unthreaded models
● Connection pooling
● Alternatives: persistent or one-off

connections
● Exports ap_dbd API

ap_dbd

struct ap_dbd_t {
 /* driver, handle, statements, pool */
};

ap_dbd_prepare (startup)
ap_dbd_open (indefinite lifetime)
ap_dbd_close (close after an open)
ap_dbd_acquire (request-oriented)
ap_dbd_cacquire (connection-oriented)

Server Configuration

<VirtualHost foo.example.com>
 DBDriver pgsql
 DBDParams “host=db.example.com
 user=apache pass=secret”
 DBDMin 5
 DBDKeep 20
 DBDMax 50
 DBDExptime 120
#DBDPrepareSQL, DBDPersist
</VirtualHost>

DBD for Modules

● httpd.conf: prepare statements at server
startup with ap_dbd_prepare

● Req/Conn Processing: ap_dbd_[c]acquire
normally preferred

● Caution: an acquired connection is attached
to the request_rec, and returned to every
module that uses acquire. Always leave
clean and unencumbered. Use open/close if
your module can't share with other modules!

● apr_dbd API for database ops

DBD for Scripting

Goal for developers of scripting languages:
integrate apr_dbd into familiar scripting idioms

Example: perl
 $sql = new DBD::APR driver => mysql
 params => ... etc ...;

Standalone perl will use apr_dbd; mod_perl
will substitute the ap_dbd API calls for
obtaining a database connection

Embedded scripting

<table>
 <caption>Query Results</caption>
 [set res [apr::dbd::pselect $stmt $params]]
 <thead><tr><th>[apr::dbd::get_name $res 0]</th>

<th>[apr::dbd::get_name $res 1]</th></tr></thead>
 <tbody>[foreach $row [apr::dbd::get_row $res]
 <tr><td>[apr::dbd::get_entry $row 0]</td>
 <td>[apr::dbd::get_entry $row 1]</td></tr>
] </tbody>
</table>

Embedded SQL

mod_sql, mod_sqil

<table>
<caption>Search Results</caption>
<sql:select

query=”select foo from bar where all is not lost”
format=”<tr><td>$1</td><td>$2</td>” />

</table>

Standalone DBD Apps

● Don't forget apr_dbd_init !
● apr_dbd API is a direct alternative to native

database client libraries, and other multi-
database APIs such as libdbi, ODBC.

● Selling points include resource management
with APR pools, connection pooling support
(as in mod_dbd) with apr_reslist, and APR
optional function API.

Examples

● Authentication
● Authorization
● Embedded SQL
● Embedded Scripting
● General Scripting
● Logging to SQL
● SQL-based vhost configuration
● SQL backend for DAV

References

● Applications Development with Apache (the apache
modules book) contains by far the most complete
reference.

● http://httpd.apache.org/docs/2.2/mod/mod_dbd.html
● http://people.apache.org/~niq/dbd.html
● http://apache.webthing.com/database/
● http://www.apachetutor.org/dev/reslist

