
Portlets in Python

Using jython to write JSR-168 portlets

Santiago Gala

2

Background

portals.apache.org
• jetspeed
• pluto
• graffito
• WSRP4J
• Portal Bridges

• strong java background
• (but) we want to do cross-language portals

Jetspeed

since around 1999
• portlet API (JSR-168) evolved out of proposals

in jetspeed-dev@jakarta.apache.org
• early experiments
• “legacy” jetspeed-1.6 that can do JSR-168

portlets
• using fusion -> embedded pluto portal container

Jetspeed

v 2.X re-designed with portlet API in mind
• Spring pipelines
• JAAS auth
• portlets (using internal attributes) for layout

and decoration
• uses pluto as portlet container

Pluto

since 2004 or so
• reference implementation of JSR-168
• version 1.0.x out of original donation
• refactoring in 1.1

Cocoon portal
• uses pluto as portlet container too
• integrated with the cocoon xml framework:

cocoon.apache.org

Graffito

• CMS portlets
• from Jetspeed to incubation
• waiting for enough community to join

portals
• uses jackrabbit

• Java Content Repository API (JSR 170)

WSRP4J

• Oasis standard for remote portlets
• under incubation
• via WSRP (Web Services remoting of

portlets, Oasis Standard)

Bridges

• for java frameworks such as JSF or Struts
• for CGI scripts (perl, PHP)
• Using JNI for PHP 4
• --> python, for jython integration

Why cross-language?

• safety network
• cross breeding
• java is beginning to show its age

• integrators want to “mix and match”
• php pool of common knowledge/code
• legacy CGI scripts in companies
• “postmodern” frameworks

Portlets

Similar to servlets, but
• isolated (from other portlets) in the page
• with a richer (two way) interaction model

• action -> changes in model
• render -> pure view

• allow delivery of portlet applications (.war)
with portlet.xml config

JSR-168

PortletAPI
Used mostly for highly dynamic intranet

webapps
Enterprise ready technology
Currently being updated in JSR-286

where do portlets fit in MVC?

portlets typically act as controllers:
• perform actions (update the model)
• dispatch to a view/edit/help template during

render
• can switch views according to preferences or

state (minimized, maximized)
• partial help from the portal

portlet modes (VIEW, EDIT, HELP, ...)

Too much freedom?

• nothing impedes a portlet to be all three
things (M, V and C)

• a very open technology, like servlets
• much better (action/render)

• Needs Frameworks to shape its use
• interaction with Java Server Faces
• Good practices

Common practices

• views are JSP pages
• views using velocity
• bridging frameworks

• JSF
• struts

Dynamic languages

• no static typing (or optional)
• duck typing (pure Liskov substitution

principle)
• php, perl, python, ruby, ecmascript, ...

(even VB)

Why Dynamic?

• Looking for productivity gains
• concise
• expressive

• sweet spot for scripting/prototyping
• changing (or)
• unclear requirements

Python

• Very well managed evolution
• Mature yet fresh
• Has reasonable java (and C#)

implementations

Why not XXX?

• I like the python syntax (YMMV)
• easy to learn
• simple code looks simple
• can do complex things, but it has entry

barriers
• more “enteprisey” than Ruby (IMNSHO)
• very good for inter-language glue

Jython

• It is at the 2.2 alpha 1 level
• allows for tight java integration

• python objects can inherit from java objects
• python classes turn into java classes
• bean-like properties

• moving again after migration to svn

Test case for classpath

• I wrote a quick and dirty jython testcase
for a bug in classpath (java.security)

• interactive
• easy to understand
• concise

• Also, jikesrvm hacking example

“postmodern” Web frameworks

• TLA (Three Letter Acronyms) packed:
• DRY (Don't Repeat Yourself)
• MVC (Model-View-Controller) forced on you
• ORM (Object-Relational-Model)for simple DB

generation

• advanced template engines
• fit for the task

back to PHP-world?

• Zero-training (Sam Ruby)
• Slashcode or Duke-nuke
• but also Moodle or Dokeos

• new frameworks are more structured, and
abstract DB at the right level

TurboGears example

• wiki in 20 minutes
• model -> (transparent DB access)
• controller using annotations for view mapping
• views use kid, neat if you like XML

Do we need continuations?
• they have been used to model non-linear

navigation in webapps
• “universal” Back button

• a tree of program “stacks” (really activation
frames lists)
• storing virtual PC, locals, globals
• what scheme calls “environment”

• difficult to grok and tricky to use

for Wizards?

• The portlet API model decouples each
portlet from the page behaviour
• each portlet only sees actions addressed to it,

and render must be idempotent

• portals don't deal very well with Back

Wizards

• Each portlet can do linear flow
programming...
• programmer controlled “back”

• which allows wizards
• data validation
• multi-step transactions

Python generators

• Basically implement the Iterator pattern
• next(), StopIteration, yield <value>
• changing in python 2.5

• to be shaped exactly as we need them

• in 2.2 need “from __future__ import generators”

• Similar to java Iterator model

generator example
def fibo(max=100):
 a,b=1,1
 while a <= max:
 yield a
 a,b=b,a+b

>>>fibo()
<generator object at 0x30085288>
>>>[i for i in fibo()]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

RequestGenerator
class validator(requestProcessor):
 def process(self):
 env = {}
 yield initial_page

for req in self.requests():
 if req.cancel: raise StopIteration(“cancelled”)

 if not valid(req):
 yield form % env.update({'error':req.error})

 env.update(req)
 page = do_something(env)

 yield page
 raise StopIteration

python modulo operator

for strings...
...makes for a poor man template engine

“%s => %s” % (key, value)
“%(key)s => %(value)s” % dict(key=key, value=value)

with printf-like formats

There are better things (i.e. kid, cheetah, ...)

Performance

• jython has a slow startup
• for process intensive tasks 2/3 times slower

than java
most portlets are not process intensive...
...or at least the controller is not
rss portlet using Mark Pilgrim's feedparser.py is

reasonable performance and packed with
features

+++ jython demo layouts clearly faster than
current velocity ones

using modulo-templates :)

Great for integration

• demoing a portlet around an existing
business infrastructure

• quick changes to test different UI
approaches

• alternate business processes simulation
...you name it

Where to go from here?

• prototype committed in
portals.apache.org/bridges
for you to play with...
...send patches
...or commit new stuff

Crazy ideas beyond

• write a pure python servlet/portlet API
emulation layer
• to enable lightweight portlet prototyping

• in my laptop
• java server env too CPU and memory intensive

References

http://portals.apache.org
http://www.python.org
http://jython.sf.net

Questions?

Answers not guaranteed!

Thanks for your attention

hope you enjoyed the presentation

